研究方案文件分类中单任务与多任务学习的比较研究

A. Abdillah, Mohammad Zaenuddin Hamidi, Ratih Nur Esti Anggraeni, R. Sarno
{"title":"研究方案文件分类中单任务与多任务学习的比较研究","authors":"A. Abdillah, Mohammad Zaenuddin Hamidi, Ratih Nur Esti Anggraeni, R. Sarno","doi":"10.1109/ICTS52701.2021.9608043","DOIUrl":null,"url":null,"abstract":"Research protocol is an important document to be scrutinized by the ethical committee. As the research proposal is growing, the necessity for quick and concise protocol review is rising. This study undergoes a comparative study of multi-task learning (MTL) and single-task learning (STL) to classify research protocol documents. We try to carry out the classification process from the summary of health research. We represent research documents as multi-label classification problems and develop a deep learning model based on MTL and STL strategies. In our evaluation, multi-task learning achieved a better result with 0.125 loss and 0.785 Jaccard score than 0.182 and 0.720 in single-task learning. In consequence, MTL has a 27% slower computation time than STL.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"298 1","pages":"213-217"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative Study of Single-task and Multi-task Learning on Research Protocol Document Classification\",\"authors\":\"A. Abdillah, Mohammad Zaenuddin Hamidi, Ratih Nur Esti Anggraeni, R. Sarno\",\"doi\":\"10.1109/ICTS52701.2021.9608043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research protocol is an important document to be scrutinized by the ethical committee. As the research proposal is growing, the necessity for quick and concise protocol review is rising. This study undergoes a comparative study of multi-task learning (MTL) and single-task learning (STL) to classify research protocol documents. We try to carry out the classification process from the summary of health research. We represent research documents as multi-label classification problems and develop a deep learning model based on MTL and STL strategies. In our evaluation, multi-task learning achieved a better result with 0.125 loss and 0.785 Jaccard score than 0.182 and 0.720 in single-task learning. In consequence, MTL has a 27% slower computation time than STL.\",\"PeriodicalId\":6738,\"journal\":{\"name\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"volume\":\"298 1\",\"pages\":\"213-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS52701.2021.9608043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9608043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究方案是伦理委员会审查的重要文件。随着研究计划的增加,快速、简明的方案审查的必要性也在上升。本研究采用多任务学习(MTL)和单任务学习(STL)对研究方案文件进行分类的比较研究。我们试图从健康研究的总结出发,进行分类过程。我们将研究文档表示为多标签分类问题,并开发了基于MTL和STL策略的深度学习模型。在我们的评估中,多任务学习取得了0.125 loss和0.785 Jaccard得分优于单任务学习的0.182和0.720。因此,MTL的计算时间比STL慢27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of Single-task and Multi-task Learning on Research Protocol Document Classification
Research protocol is an important document to be scrutinized by the ethical committee. As the research proposal is growing, the necessity for quick and concise protocol review is rising. This study undergoes a comparative study of multi-task learning (MTL) and single-task learning (STL) to classify research protocol documents. We try to carry out the classification process from the summary of health research. We represent research documents as multi-label classification problems and develop a deep learning model based on MTL and STL strategies. In our evaluation, multi-task learning achieved a better result with 0.125 loss and 0.785 Jaccard score than 0.182 and 0.720 in single-task learning. In consequence, MTL has a 27% slower computation time than STL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Outlier Detection and Decision Tree for Wireless Sensor Network Fault Diagnosis Graph Algorithm for Anomaly Prediction in East Java Student Admission System FarmEasy: An Intelligent Platform to Empower Crops Prediction and Crops Marketing Hiding Messages in Audio using Modulus Operation and Simple Partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1