使用机器学习的伽马射线爆发的独立模型校准

O. Luongo, M. Muccino
{"title":"使用机器学习的伽马射线爆发的独立模型校准","authors":"O. Luongo, M. Muccino","doi":"10.1093/MNRAS/STAB795","DOIUrl":null,"url":null,"abstract":"We alleviate the circularity problem, whereby gamma-ray bursts are not perfect distance indicators, by means of a new model-independent technique based on B\\'ezier polynomials. To do so, we use the well consolidate \\textit{Amati} and \\textit{Combo} correlations. We consider improved calibrated catalogs of mock data from differential Hubble rate points. To get our mock data, we use those machine learning scenarios that well adapt to gamma ray bursts, discussing in detail how we handle small amounts of data from our machine learning techniques. In particular, we explore only three machine learning treatments, i.e. \\emph{linear regression}, \\emph{neural network} and \\emph{random forest}, emphasizing quantitative statistical motivations behind these choices. Our calibration strategy consists in taking Hubble's data, creating the mock compilation using machine learning and calibrating the aforementioned correlations through B\\'ezier polynomials with a standard chi-square analysis first and then by means of a hierarchical Bayesian regression procedure. The corresponding catalogs, built up from the two correlations, have been used to constrain dark energy scenarios. We thus employ Markov Chain Monte Carlo numerical analyses based on the most recent Pantheon supernova data, baryonic acoustic oscillations and our gamma ray burst data. We test the standard $\\Lambda$CDM model and the Chevallier-Polarski-Linder parametrization. We discuss the recent $H_0$ tension in view of our results. Moreover, we highlight a further severe tension over $\\Omega_m$ and we conclude that a slight evolving dark energy model is possible.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Model-independent calibrations of gamma-ray bursts using machine learning\",\"authors\":\"O. Luongo, M. Muccino\",\"doi\":\"10.1093/MNRAS/STAB795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We alleviate the circularity problem, whereby gamma-ray bursts are not perfect distance indicators, by means of a new model-independent technique based on B\\\\'ezier polynomials. To do so, we use the well consolidate \\\\textit{Amati} and \\\\textit{Combo} correlations. We consider improved calibrated catalogs of mock data from differential Hubble rate points. To get our mock data, we use those machine learning scenarios that well adapt to gamma ray bursts, discussing in detail how we handle small amounts of data from our machine learning techniques. In particular, we explore only three machine learning treatments, i.e. \\\\emph{linear regression}, \\\\emph{neural network} and \\\\emph{random forest}, emphasizing quantitative statistical motivations behind these choices. Our calibration strategy consists in taking Hubble's data, creating the mock compilation using machine learning and calibrating the aforementioned correlations through B\\\\'ezier polynomials with a standard chi-square analysis first and then by means of a hierarchical Bayesian regression procedure. The corresponding catalogs, built up from the two correlations, have been used to constrain dark energy scenarios. We thus employ Markov Chain Monte Carlo numerical analyses based on the most recent Pantheon supernova data, baryonic acoustic oscillations and our gamma ray burst data. We test the standard $\\\\Lambda$CDM model and the Chevallier-Polarski-Linder parametrization. We discuss the recent $H_0$ tension in view of our results. Moreover, we highlight a further severe tension over $\\\\Omega_m$ and we conclude that a slight evolving dark energy model is possible.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/MNRAS/STAB795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MNRAS/STAB795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们利用一种新的基于bsamizier多项式的模型无关技术,解决了伽马射线暴不是完美距离指示器的圆度问题。为此,我们使用井合并\textit{Amati}和\textit{Combo}相关性。我们考虑改进的校准目录模拟数据从不同的哈勃速率点。为了获得模拟数据,我们使用了那些能够很好地适应伽马射线爆发的机器学习场景,详细讨论了如何处理来自机器学习技术的少量数据。特别地,我们只探讨了三种机器学习处理方法,即\emph{线性回归}、\emph{神经网络}和\emph{随机森林},强调了这些选择背后的定量统计动机。我们的校准策略包括获取哈勃的数据,使用机器学习创建模拟编译,并首先通过标准卡方分析的bsamzier多项式校准上述相关性,然后通过分层贝叶斯回归过程。根据这两种相关性建立的相应的目录,已经被用来限制暗能量的情景。因此,我们采用马尔可夫链蒙特卡罗数值分析基于最新的万神殿超新星数据,重子声学振荡和我们的伽马射线暴数据。我们测试了标准$\Lambda$ CDM模型和Chevallier-Polarski-Linder参数化。鉴于我们的结果,我们讨论最近的$H_0$紧张局势。此外,我们强调了$\Omega_m$上进一步的严重紧张,我们得出结论,一个轻微演变的暗能量模型是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-independent calibrations of gamma-ray bursts using machine learning
We alleviate the circularity problem, whereby gamma-ray bursts are not perfect distance indicators, by means of a new model-independent technique based on B\'ezier polynomials. To do so, we use the well consolidate \textit{Amati} and \textit{Combo} correlations. We consider improved calibrated catalogs of mock data from differential Hubble rate points. To get our mock data, we use those machine learning scenarios that well adapt to gamma ray bursts, discussing in detail how we handle small amounts of data from our machine learning techniques. In particular, we explore only three machine learning treatments, i.e. \emph{linear regression}, \emph{neural network} and \emph{random forest}, emphasizing quantitative statistical motivations behind these choices. Our calibration strategy consists in taking Hubble's data, creating the mock compilation using machine learning and calibrating the aforementioned correlations through B\'ezier polynomials with a standard chi-square analysis first and then by means of a hierarchical Bayesian regression procedure. The corresponding catalogs, built up from the two correlations, have been used to constrain dark energy scenarios. We thus employ Markov Chain Monte Carlo numerical analyses based on the most recent Pantheon supernova data, baryonic acoustic oscillations and our gamma ray burst data. We test the standard $\Lambda$CDM model and the Chevallier-Polarski-Linder parametrization. We discuss the recent $H_0$ tension in view of our results. Moreover, we highlight a further severe tension over $\Omega_m$ and we conclude that a slight evolving dark energy model is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1