从聚对苯二甲酸乙酯塑料废料中无排放水热低温合成碳纳米材料,用于优异的超级电容器应用

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Letters and Reviews Pub Date : 2023-01-02 DOI:10.1080/17518253.2023.2173025
M. Kigozi, G. Kasozi, Sachin Balaso Mohite, S. Zamisa, R. Karpoormath, J. Kirabira, E. Tebandeke
{"title":"从聚对苯二甲酸乙酯塑料废料中无排放水热低温合成碳纳米材料,用于优异的超级电容器应用","authors":"M. Kigozi, G. Kasozi, Sachin Balaso Mohite, S. Zamisa, R. Karpoormath, J. Kirabira, E. Tebandeke","doi":"10.1080/17518253.2023.2173025","DOIUrl":null,"url":null,"abstract":"ABSTRACT Poly(ethylene terephthalate) (PET) has a wide range of applications that generate a lot of waste globally; thus, upcycling PET is important because it offers several industrial and economic advantages. This study describes a sustainable, emissions-free process for converting PET plastics into carbon nanomaterials (CNMs) named PT-nano powder. The thermal-hydrothermal method has employed the production of PT-nano powder above the glass transition temperature (Tg) of PET plastics. Under optimal conditions, PET plastics were efficiently converted into PT-nano powder with 86.6% crystallinity and an average particle size of 6.5 nm. The PT-nano powder was characterized for physical and chemical properties using different techniques, including UV-Vis, FTIR, Raman spectroscopy, XRD, FESEM, TEM, and proton NMR analysis. The characterization confirms the complete conversion of PET to solid fractions of carbon nanomaterial. The PT-nano powder was tested in supercapacitor performance application with electrochemical characterization. The symmetric fabrication showed a specific capacitance of 250.8 F/g, energy density of 34.83Wh/kg, and power density of 999.9W/kg with a current density of 0.5A/g. The device fabrication exhibited high cycle stability and high capacitance retention of 96.8% with a current density of 1.5A/g after 10000 cycles. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"25 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-emission hydrothermal low-temperature synthesis of carbon nanomaterials from poly (ethylene terephthalate) plastic waste for excellent supercapacitor applications\",\"authors\":\"M. Kigozi, G. Kasozi, Sachin Balaso Mohite, S. Zamisa, R. Karpoormath, J. Kirabira, E. Tebandeke\",\"doi\":\"10.1080/17518253.2023.2173025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Poly(ethylene terephthalate) (PET) has a wide range of applications that generate a lot of waste globally; thus, upcycling PET is important because it offers several industrial and economic advantages. This study describes a sustainable, emissions-free process for converting PET plastics into carbon nanomaterials (CNMs) named PT-nano powder. The thermal-hydrothermal method has employed the production of PT-nano powder above the glass transition temperature (Tg) of PET plastics. Under optimal conditions, PET plastics were efficiently converted into PT-nano powder with 86.6% crystallinity and an average particle size of 6.5 nm. The PT-nano powder was characterized for physical and chemical properties using different techniques, including UV-Vis, FTIR, Raman spectroscopy, XRD, FESEM, TEM, and proton NMR analysis. The characterization confirms the complete conversion of PET to solid fractions of carbon nanomaterial. The PT-nano powder was tested in supercapacitor performance application with electrochemical characterization. The symmetric fabrication showed a specific capacitance of 250.8 F/g, energy density of 34.83Wh/kg, and power density of 999.9W/kg with a current density of 0.5A/g. The device fabrication exhibited high cycle stability and high capacitance retention of 96.8% with a current density of 1.5A/g after 10000 cycles. GRAPHICAL ABSTRACT\",\"PeriodicalId\":12768,\"journal\":{\"name\":\"Green Chemistry Letters and Reviews\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Letters and Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/17518253.2023.2173025\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2173025","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-emission hydrothermal low-temperature synthesis of carbon nanomaterials from poly (ethylene terephthalate) plastic waste for excellent supercapacitor applications
ABSTRACT Poly(ethylene terephthalate) (PET) has a wide range of applications that generate a lot of waste globally; thus, upcycling PET is important because it offers several industrial and economic advantages. This study describes a sustainable, emissions-free process for converting PET plastics into carbon nanomaterials (CNMs) named PT-nano powder. The thermal-hydrothermal method has employed the production of PT-nano powder above the glass transition temperature (Tg) of PET plastics. Under optimal conditions, PET plastics were efficiently converted into PT-nano powder with 86.6% crystallinity and an average particle size of 6.5 nm. The PT-nano powder was characterized for physical and chemical properties using different techniques, including UV-Vis, FTIR, Raman spectroscopy, XRD, FESEM, TEM, and proton NMR analysis. The characterization confirms the complete conversion of PET to solid fractions of carbon nanomaterial. The PT-nano powder was tested in supercapacitor performance application with electrochemical characterization. The symmetric fabrication showed a specific capacitance of 250.8 F/g, energy density of 34.83Wh/kg, and power density of 999.9W/kg with a current density of 0.5A/g. The device fabrication exhibited high cycle stability and high capacitance retention of 96.8% with a current density of 1.5A/g after 10000 cycles. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
期刊最新文献
Life cycle assessment and biodegradability of biodiesel produced using different alcohols and heterogeneous catalysts Sustainable ballistic solutions for recycling silkworm cocoon waste into high-performance bulletproof materials Retraction Enhanced light absorption and charge carrier’s separation in g-C3N4-based double Z-scheme heterostructure photocatalyst for efficient degradation of navy-blue dye Green synthesis of polymeric surfactants from recycling of plastic waste for applications on steel protection in the petroleum industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1