{"title":"基于新适应度分配和多协同策略的多目标粒子群优化算法","authors":"Weiwei Yu, Li Zhang, Chengwang Xie","doi":"10.4018/IJCINI.20211001.OA29","DOIUrl":null,"url":null,"abstract":"Many-objective optimization problems (MaOPs) refer to those multi-objective problems (MOPs) with more than three objectives. In order to solve MaOPs, a multi-objective particle swarm optimization algorithm based on new fitness assignment and multi cooperation strategy (FAMSHMPSO) is proposed. Firstly, this paper proposes a new fitness allocation method based on fuzzy information theory to enhance the convergence of the algorithm. Then a new multi-criteria mutation strategy is introduced to disturb the population and improve the diversity of the algorithm. Finally, the external files are maintained by the three-point shortest path method, which improves the quality of the solution. The performance of FAMSHMPSO algorithm is evaluated by evaluating the mean value, standard deviation, and IGD+ index of the target value on dtlz test function set of different targets of FAMSHMPSO algorithm and other five representative multi-objective evolutionary algorithms. The experimental results show that FAMSHMPSO algorithm has obvious performance advantages in convergence, diversity, and robustness.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"25 1","pages":"1-23"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many-Objective Particle Swarm Optimization Algorithm Based on New Fitness Allocation and Multiple Cooperative Strategies\",\"authors\":\"Weiwei Yu, Li Zhang, Chengwang Xie\",\"doi\":\"10.4018/IJCINI.20211001.OA29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-objective optimization problems (MaOPs) refer to those multi-objective problems (MOPs) with more than three objectives. In order to solve MaOPs, a multi-objective particle swarm optimization algorithm based on new fitness assignment and multi cooperation strategy (FAMSHMPSO) is proposed. Firstly, this paper proposes a new fitness allocation method based on fuzzy information theory to enhance the convergence of the algorithm. Then a new multi-criteria mutation strategy is introduced to disturb the population and improve the diversity of the algorithm. Finally, the external files are maintained by the three-point shortest path method, which improves the quality of the solution. The performance of FAMSHMPSO algorithm is evaluated by evaluating the mean value, standard deviation, and IGD+ index of the target value on dtlz test function set of different targets of FAMSHMPSO algorithm and other five representative multi-objective evolutionary algorithms. The experimental results show that FAMSHMPSO algorithm has obvious performance advantages in convergence, diversity, and robustness.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"25 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCINI.20211001.OA29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20211001.OA29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Many-Objective Particle Swarm Optimization Algorithm Based on New Fitness Allocation and Multiple Cooperative Strategies
Many-objective optimization problems (MaOPs) refer to those multi-objective problems (MOPs) with more than three objectives. In order to solve MaOPs, a multi-objective particle swarm optimization algorithm based on new fitness assignment and multi cooperation strategy (FAMSHMPSO) is proposed. Firstly, this paper proposes a new fitness allocation method based on fuzzy information theory to enhance the convergence of the algorithm. Then a new multi-criteria mutation strategy is introduced to disturb the population and improve the diversity of the algorithm. Finally, the external files are maintained by the three-point shortest path method, which improves the quality of the solution. The performance of FAMSHMPSO algorithm is evaluated by evaluating the mean value, standard deviation, and IGD+ index of the target value on dtlz test function set of different targets of FAMSHMPSO algorithm and other five representative multi-objective evolutionary algorithms. The experimental results show that FAMSHMPSO algorithm has obvious performance advantages in convergence, diversity, and robustness.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.