基于CNN微多普勒特征的转子目标运动状态分类

Wantian Wang, Zi-yue Tang, Xin Xiong, Yi-chang Chen, Yuanpeng Zhang, Yongjian Sun, Zhenbo Zhu, Chang Zhou
{"title":"基于CNN微多普勒特征的转子目标运动状态分类","authors":"Wantian Wang, Zi-yue Tang, Xin Xiong, Yi-chang Chen, Yuanpeng Zhang, Yongjian Sun, Zhenbo Zhu, Chang Zhou","doi":"10.1109/IGARSS.2019.8900361","DOIUrl":null,"url":null,"abstract":"Based on the different micro-Doppler modulation of three motion states of rotor target, i.e., hovering, rising and falling, a convolutional neural network (CNN) is utilized for motion states classification of rotor target in this paper. Firstly, to obtain the time-frequency spectrograms of target, the short-time Fourier transform (STFT) is applied to target echo signal after pulse compression, theoretical analysis and simulation experiments show that the maximum value of micro-Doppler frequency varies with different motion states. Secondly, we partition the echo data under three different radios of training data, i.e., 20%, 33% and 50%. Finally, the spectrogram data are fed into the proposed CNN architecture, and the cross validation is utilized to investigate the robustness of the proposed method. Experimental results show that with the continuous training iteration of the network, the data fitting ability and classification accuracy increases gradually and reaches 98.23% on average with the training data radio is 50%.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"1390-1393"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion States Classification of Rotor Target Based On Micro-Doppler Features Using CNN\",\"authors\":\"Wantian Wang, Zi-yue Tang, Xin Xiong, Yi-chang Chen, Yuanpeng Zhang, Yongjian Sun, Zhenbo Zhu, Chang Zhou\",\"doi\":\"10.1109/IGARSS.2019.8900361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the different micro-Doppler modulation of three motion states of rotor target, i.e., hovering, rising and falling, a convolutional neural network (CNN) is utilized for motion states classification of rotor target in this paper. Firstly, to obtain the time-frequency spectrograms of target, the short-time Fourier transform (STFT) is applied to target echo signal after pulse compression, theoretical analysis and simulation experiments show that the maximum value of micro-Doppler frequency varies with different motion states. Secondly, we partition the echo data under three different radios of training data, i.e., 20%, 33% and 50%. Finally, the spectrogram data are fed into the proposed CNN architecture, and the cross validation is utilized to investigate the robustness of the proposed method. Experimental results show that with the continuous training iteration of the network, the data fitting ability and classification accuracy increases gradually and reaches 98.23% on average with the training data radio is 50%.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"18 1\",\"pages\":\"1390-1393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文基于旋翼目标悬停、上升和下降三种运动状态的不同微多普勒调制,利用卷积神经网络(CNN)对旋翼目标进行运动状态分类。首先,对脉冲压缩后的目标回波信号进行短时傅立叶变换(STFT),得到目标的时频谱图,理论分析和仿真实验表明,微多普勒频率最大值随运动状态的不同而变化。其次,我们将回波数据划分为训练数据的三种不同比例,即20%、33%和50%。最后,将谱图数据输入到所提出的CNN架构中,并利用交叉验证来验证所提出方法的鲁棒性。实验结果表明,随着网络的不断训练迭代,数据拟合能力和分类准确率逐渐提高,平均达到98.23%,训练数据的准确率为50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion States Classification of Rotor Target Based On Micro-Doppler Features Using CNN
Based on the different micro-Doppler modulation of three motion states of rotor target, i.e., hovering, rising and falling, a convolutional neural network (CNN) is utilized for motion states classification of rotor target in this paper. Firstly, to obtain the time-frequency spectrograms of target, the short-time Fourier transform (STFT) is applied to target echo signal after pulse compression, theoretical analysis and simulation experiments show that the maximum value of micro-Doppler frequency varies with different motion states. Secondly, we partition the echo data under three different radios of training data, i.e., 20%, 33% and 50%. Finally, the spectrogram data are fed into the proposed CNN architecture, and the cross validation is utilized to investigate the robustness of the proposed method. Experimental results show that with the continuous training iteration of the network, the data fitting ability and classification accuracy increases gradually and reaches 98.23% on average with the training data radio is 50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1