Biaokai Zhu, Zejiao Yang, Yupeng Jia, Shengxin Chen, Jie Song, Sanman Liu, P. Li, Feng Li, Deng-ao Li
{"title":"基于rfid单标签的多目标频率特征识别与状态检测","authors":"Biaokai Zhu, Zejiao Yang, Yupeng Jia, Shengxin Chen, Jie Song, Sanman Liu, P. Li, Feng Li, Deng-ao Li","doi":"10.1145/3615665","DOIUrl":null,"url":null,"abstract":"Vibration is a normal reaction that occurs during the operation of machinery and is very common in industrial systems. How to turn fine-grained vibration perception into visualization, and further predict mechanical failures and reduce property losses based on visual vibration information, which has aroused our thinking. In this paper, the phase information generated by the tag is processed and analyzed, and MFD is proposed, a real-time vibration monitoring and fault-sensing discrimination system. MFD extracts phase information from the original RF signal and converts it into a markov transition map by introducing White Gaussian Noise and a low-pass filter for denoising. To accurately predict the failure of machinery, a deep and machine learning model is introduced to calculate the accuracy of failure analysis, realizing real-time monitoring and fault judgment. The test results show that the average recognition accuracy of vibration can reach 96.07%, and the average recognition accuracy of forward rotation, reverse rotation, oil spill, and screw loosening of motor equipment during long-term operation can reach 98.53%, 99.44%, 97.87%, and 99.91%, respectively, with high robustness.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MFD: Multi-object Frequency Feature Recognition and State Detection Based on RFID-single Tag\",\"authors\":\"Biaokai Zhu, Zejiao Yang, Yupeng Jia, Shengxin Chen, Jie Song, Sanman Liu, P. Li, Feng Li, Deng-ao Li\",\"doi\":\"10.1145/3615665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration is a normal reaction that occurs during the operation of machinery and is very common in industrial systems. How to turn fine-grained vibration perception into visualization, and further predict mechanical failures and reduce property losses based on visual vibration information, which has aroused our thinking. In this paper, the phase information generated by the tag is processed and analyzed, and MFD is proposed, a real-time vibration monitoring and fault-sensing discrimination system. MFD extracts phase information from the original RF signal and converts it into a markov transition map by introducing White Gaussian Noise and a low-pass filter for denoising. To accurately predict the failure of machinery, a deep and machine learning model is introduced to calculate the accuracy of failure analysis, realizing real-time monitoring and fault judgment. The test results show that the average recognition accuracy of vibration can reach 96.07%, and the average recognition accuracy of forward rotation, reverse rotation, oil spill, and screw loosening of motor equipment during long-term operation can reach 98.53%, 99.44%, 97.87%, and 99.91%, respectively, with high robustness.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3615665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3615665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MFD: Multi-object Frequency Feature Recognition and State Detection Based on RFID-single Tag
Vibration is a normal reaction that occurs during the operation of machinery and is very common in industrial systems. How to turn fine-grained vibration perception into visualization, and further predict mechanical failures and reduce property losses based on visual vibration information, which has aroused our thinking. In this paper, the phase information generated by the tag is processed and analyzed, and MFD is proposed, a real-time vibration monitoring and fault-sensing discrimination system. MFD extracts phase information from the original RF signal and converts it into a markov transition map by introducing White Gaussian Noise and a low-pass filter for denoising. To accurately predict the failure of machinery, a deep and machine learning model is introduced to calculate the accuracy of failure analysis, realizing real-time monitoring and fault judgment. The test results show that the average recognition accuracy of vibration can reach 96.07%, and the average recognition accuracy of forward rotation, reverse rotation, oil spill, and screw loosening of motor equipment during long-term operation can reach 98.53%, 99.44%, 97.87%, and 99.91%, respectively, with high robustness.