3D打印过程中工件层厚和取向对零件微观和宏观几何性能及加工时间的影响

IF 1.3 Q3 ENGINEERING, MECHANICAL PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING Pub Date : 2023-02-17 DOI:10.3311/ppme.21473
G. Kónya, P. Ficzere
{"title":"3D打印过程中工件层厚和取向对零件微观和宏观几何性能及加工时间的影响","authors":"G. Kónya, P. Ficzere","doi":"10.3311/ppme.21473","DOIUrl":null,"url":null,"abstract":"3D printing technologies have developed significantly over the last 30 years, with a major impact on all segments of today's industry. With the introduction of additive manufacturing, product development time can be greatly reduced and printing functional parts directly is also a viable option. Another advantage of additive manufacturing is that it allows greater design freedom than traditional manufacturing technologies. This makes it possible to print products with complex geometries and even different material qualities. In this paper, the authors investigated the effects of printing time, the layer thickness and the orientation on the surface roughness and cylindricity of the printed parts. The aim is to find the combination of layer thickness and part orientation which causes the best results in terms of surface roughness and cylindricity as a function of printing time.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Layer Thickness and Orientation of the Workpiece on the Micro- and Macrogeometric Properties and the Machining Time of the Part during 3D Printing\",\"authors\":\"G. Kónya, P. Ficzere\",\"doi\":\"10.3311/ppme.21473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D printing technologies have developed significantly over the last 30 years, with a major impact on all segments of today's industry. With the introduction of additive manufacturing, product development time can be greatly reduced and printing functional parts directly is also a viable option. Another advantage of additive manufacturing is that it allows greater design freedom than traditional manufacturing technologies. This makes it possible to print products with complex geometries and even different material qualities. In this paper, the authors investigated the effects of printing time, the layer thickness and the orientation on the surface roughness and cylindricity of the printed parts. The aim is to find the combination of layer thickness and part orientation which causes the best results in terms of surface roughness and cylindricity as a function of printing time.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.21473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.21473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

3D打印技术在过去的30年里有了显著的发展,对当今行业的各个领域都产生了重大影响。随着增材制造的引入,产品开发时间可以大大缩短,直接打印功能部件也是一种可行的选择。增材制造的另一个优势是,与传统制造技术相比,它允许更大的设计自由度。这使得打印具有复杂几何形状甚至不同材料质量的产品成为可能。本文研究了打印时间、层厚和方向对打印件表面粗糙度和圆柱度的影响。目的是找到层厚度和零件方向的组合,使表面粗糙度和圆柱度作为打印时间的函数产生最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Layer Thickness and Orientation of the Workpiece on the Micro- and Macrogeometric Properties and the Machining Time of the Part during 3D Printing
3D printing technologies have developed significantly over the last 30 years, with a major impact on all segments of today's industry. With the introduction of additive manufacturing, product development time can be greatly reduced and printing functional parts directly is also a viable option. Another advantage of additive manufacturing is that it allows greater design freedom than traditional manufacturing technologies. This makes it possible to print products with complex geometries and even different material qualities. In this paper, the authors investigated the effects of printing time, the layer thickness and the orientation on the surface roughness and cylindricity of the printed parts. The aim is to find the combination of layer thickness and part orientation which causes the best results in terms of surface roughness and cylindricity as a function of printing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
期刊最新文献
Investigating Particle Paths in Intracranial Aneurysms: A Parametric Study The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions Global Approach on the Shear and Cross Tension Strength of Resistance Spot Welded Thin Steel Sheets Photovoltaic Energy Generation in Hungary: Potentials of Green Hydrogen Production by PEM Technology Numerical Analysis to Investigate the Impact of Skirt Geometric Parameters on Secondary Piston Movement in a Single-cylinder Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1