{"title":"高分子纳米复合材料中卟啉连接碳纳米结构的研究进展","authors":"Ayesha Kausar","doi":"10.1080/10601325.2023.2210172","DOIUrl":null,"url":null,"abstract":"Abstract Porphyrins is a unique heterocyclic molecule with four modified pyrrole rings interconnected at α carbon atoms via methine groups. The potential of porphyrin has been enhanced by developing the linked nanostructures with nanocarbons (carbon nanotube, graphene and fullerene) through physical/covalent electron donor-acceptor interactions. The porphyrin linked nanocarbon nanostructures have been reinforced in the polymeric matrices such as thermoplastic and conjugated polymers using facile approaches. The polymer/porphyrin linked nanocarbon nanocomposite revealed several remarkable characteristics like high surface area, conductivity, optical, thermal, mechanical capacitance, sensing and photocatalytic features. The high-performance nanocomposite nanostructures have been employed in sensor, supercapacitor and solar cell applications. Graphical Abstract","PeriodicalId":16228,"journal":{"name":"Journal of Macromolecular Science, Part A","volume":"37 1","pages":"321 - 335"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porphyrin linked carbon nanostructures in polymeric nanocomposite—state-of-the-art and headways\",\"authors\":\"Ayesha Kausar\",\"doi\":\"10.1080/10601325.2023.2210172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Porphyrins is a unique heterocyclic molecule with four modified pyrrole rings interconnected at α carbon atoms via methine groups. The potential of porphyrin has been enhanced by developing the linked nanostructures with nanocarbons (carbon nanotube, graphene and fullerene) through physical/covalent electron donor-acceptor interactions. The porphyrin linked nanocarbon nanostructures have been reinforced in the polymeric matrices such as thermoplastic and conjugated polymers using facile approaches. The polymer/porphyrin linked nanocarbon nanocomposite revealed several remarkable characteristics like high surface area, conductivity, optical, thermal, mechanical capacitance, sensing and photocatalytic features. The high-performance nanocomposite nanostructures have been employed in sensor, supercapacitor and solar cell applications. Graphical Abstract\",\"PeriodicalId\":16228,\"journal\":{\"name\":\"Journal of Macromolecular Science, Part A\",\"volume\":\"37 1\",\"pages\":\"321 - 335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science, Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10601325.2023.2210172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10601325.2023.2210172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Porphyrin linked carbon nanostructures in polymeric nanocomposite—state-of-the-art and headways
Abstract Porphyrins is a unique heterocyclic molecule with four modified pyrrole rings interconnected at α carbon atoms via methine groups. The potential of porphyrin has been enhanced by developing the linked nanostructures with nanocarbons (carbon nanotube, graphene and fullerene) through physical/covalent electron donor-acceptor interactions. The porphyrin linked nanocarbon nanostructures have been reinforced in the polymeric matrices such as thermoplastic and conjugated polymers using facile approaches. The polymer/porphyrin linked nanocarbon nanocomposite revealed several remarkable characteristics like high surface area, conductivity, optical, thermal, mechanical capacitance, sensing and photocatalytic features. The high-performance nanocomposite nanostructures have been employed in sensor, supercapacitor and solar cell applications. Graphical Abstract