非药物干预在血吸虫病动力学中的作用

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES Journal of Mathematical and Fundamental Sciences Pub Date : 2021-09-23 DOI:10.5614/j.math.fund.sci.2021.53.2.6
Agatha Abokwara, C. E. Madubueze
{"title":"非药物干预在血吸虫病动力学中的作用","authors":"Agatha Abokwara, C. E. Madubueze","doi":"10.5614/j.math.fund.sci.2021.53.2.6","DOIUrl":null,"url":null,"abstract":"Schistosomiasis is a neglected tropical disease affecting communities surrounded by water bodies where fishing activities take place or people go to swim, wash and cultivate crops. It poses a great risk to the health and economic life of inhabitants of the area. This study was carried out to evaluate the impact of public health education and snail control measures on the incidence of schistosomiasis. A model was developed with attention given to the snail and human populations that are the hosts of the cercariae and miracidia respectively. The existence and stability of disease-free and endemic equilibrium states were established. The disease-free and endemic equilibrium states were shown to be locally asymptotically stable whenever the basic reproduction number was less than unity. Numerical simulations of the model were carried out to evaluate the impact of interventions (public health education and snail control measures) on schistosomiasis transmission. It was observed that the implementation of low coverage snail control with highly efficacious molluscicide and massive public health education will make the basic reproduction number smaller than unity, which implies the eradication of schistosomiasis in the population.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Role of Non-pharmacological Interventions on the Dynamics of Schistosomiasis\",\"authors\":\"Agatha Abokwara, C. E. Madubueze\",\"doi\":\"10.5614/j.math.fund.sci.2021.53.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schistosomiasis is a neglected tropical disease affecting communities surrounded by water bodies where fishing activities take place or people go to swim, wash and cultivate crops. It poses a great risk to the health and economic life of inhabitants of the area. This study was carried out to evaluate the impact of public health education and snail control measures on the incidence of schistosomiasis. A model was developed with attention given to the snail and human populations that are the hosts of the cercariae and miracidia respectively. The existence and stability of disease-free and endemic equilibrium states were established. The disease-free and endemic equilibrium states were shown to be locally asymptotically stable whenever the basic reproduction number was less than unity. Numerical simulations of the model were carried out to evaluate the impact of interventions (public health education and snail control measures) on schistosomiasis transmission. It was observed that the implementation of low coverage snail control with highly efficacious molluscicide and massive public health education will make the basic reproduction number smaller than unity, which implies the eradication of schistosomiasis in the population.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2021.53.2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2021.53.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

血吸虫病是一种被忽视的热带病,影响水体周围的社区,在这些社区进行捕鱼活动或人们去游泳、清洗和种植作物。它对该地区居民的健康和经济生活构成了巨大的风险。本研究旨在评估公共卫生教育和防螺措施对血吸虫病发病率的影响。建立了一个模型,并分别考虑了作为尾蚴和蛔虫宿主的蜗牛种群和人类种群。建立了无病和地方性平衡状态的存在性和稳定性。当基本繁殖数小于1时,无病和地方病平衡状态是局部渐近稳定的。对该模型进行了数值模拟,以评估干预措施(公共卫生教育和蜗牛控制措施)对血吸虫病传播的影响。结果表明,采用高效杀螺剂的低覆盖率灭螺和大规模的公共卫生教育将使基本繁殖数小于1,这意味着种群中血吸虫病的根除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Non-pharmacological Interventions on the Dynamics of Schistosomiasis
Schistosomiasis is a neglected tropical disease affecting communities surrounded by water bodies where fishing activities take place or people go to swim, wash and cultivate crops. It poses a great risk to the health and economic life of inhabitants of the area. This study was carried out to evaluate the impact of public health education and snail control measures on the incidence of schistosomiasis. A model was developed with attention given to the snail and human populations that are the hosts of the cercariae and miracidia respectively. The existence and stability of disease-free and endemic equilibrium states were established. The disease-free and endemic equilibrium states were shown to be locally asymptotically stable whenever the basic reproduction number was less than unity. Numerical simulations of the model were carried out to evaluate the impact of interventions (public health education and snail control measures) on schistosomiasis transmission. It was observed that the implementation of low coverage snail control with highly efficacious molluscicide and massive public health education will make the basic reproduction number smaller than unity, which implies the eradication of schistosomiasis in the population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Simulation of Ultra-Short Laser Pulses Propagation and Ionization in Dual-Gas-Cells to Enhance the Quasi-Phase Matching of Harmonics Generation in Plasmas Structural and Photoluminescence Properties of Ca2+-Substituted Self-Activated Photoluminescence Material of Na2TiSiO5 Geochemistry of I-type Volcanic Arc Granitoid From Tanggamus Regency, Southern Sumatra Bioinformatic Analysis Strategy in Restriction Enzyme Selection for Indonesian Panulirus homarus Identification by PCR-RFLP Sedimentary Facies, Palynology, and Organic Geochemistry of Eocene Kalumpang Formation in Lariang and Karama Areas, West Sulawesi, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1