锚链钢在海水中的局部腐蚀

Xiaolong Zhang, N. Noël-Hermes, G. Ferrari, M. Hoogeland
{"title":"锚链钢在海水中的局部腐蚀","authors":"Xiaolong Zhang, N. Noël-Hermes, G. Ferrari, M. Hoogeland","doi":"10.3390/cmd3010004","DOIUrl":null,"url":null,"abstract":"Corrosion of mooring chains is regarded as one of main threats to the offshore mooring systems. Localized corrosion is even more dangerous than uniform corrosion because it may not show significant mass loss but it can cause stress concentration and initiate cracks under force, leading to accelerated degradation of mooring chains. Localized corrosion of steel in seawater is influenced by many factors such as the local heterogeneities of the steel, and the local electrochemical and microbiological environments. It is difficult to predict and the mechanism is not fully understood. The aim of this work was to study the mechanism of localized corrosion on mooring chain steel in seawater which is helpful in the search for corresponding monitoring tools and mitigation methods. The corrosion behavior of chain steel grade R4 was studied in artificial seawater and artificial seawater containing microorganisms collected from a practice field. The corrosion behavior of the steel was studied using different techniques such as potentiodynamic polarization, linear polarization resistance measurements and electrochemical impedance spectroscopy. The microstructures such as inclusions and compositions of the chain steel were studied using SEM and EDS. The microbial cells were observed using epi-fluorescence microscopy. The corrosion morphology and pit geometry were investigated using photo-microscopy. The localized corrosion rate has been found to be much higher than the uniform corrosion rate of the steel in the seawater in the presence of bacteria. In the case of localized corrosion, applying uniform corrosion measurement techniques and formulas is not considered representative. The representative areas have to be introduced to match physical results with the measurements. Inclusions, such as MnS and TiVCr found in the steel have a critical influence on localized corrosion. The corrosion mechanism of the steel in seawater is discussed.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localized Corrosion of Mooring Chain Steel in Seawater\",\"authors\":\"Xiaolong Zhang, N. Noël-Hermes, G. Ferrari, M. Hoogeland\",\"doi\":\"10.3390/cmd3010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corrosion of mooring chains is regarded as one of main threats to the offshore mooring systems. Localized corrosion is even more dangerous than uniform corrosion because it may not show significant mass loss but it can cause stress concentration and initiate cracks under force, leading to accelerated degradation of mooring chains. Localized corrosion of steel in seawater is influenced by many factors such as the local heterogeneities of the steel, and the local electrochemical and microbiological environments. It is difficult to predict and the mechanism is not fully understood. The aim of this work was to study the mechanism of localized corrosion on mooring chain steel in seawater which is helpful in the search for corresponding monitoring tools and mitigation methods. The corrosion behavior of chain steel grade R4 was studied in artificial seawater and artificial seawater containing microorganisms collected from a practice field. The corrosion behavior of the steel was studied using different techniques such as potentiodynamic polarization, linear polarization resistance measurements and electrochemical impedance spectroscopy. The microstructures such as inclusions and compositions of the chain steel were studied using SEM and EDS. The microbial cells were observed using epi-fluorescence microscopy. The corrosion morphology and pit geometry were investigated using photo-microscopy. The localized corrosion rate has been found to be much higher than the uniform corrosion rate of the steel in the seawater in the presence of bacteria. In the case of localized corrosion, applying uniform corrosion measurement techniques and formulas is not considered representative. The representative areas have to be introduced to match physical results with the measurements. Inclusions, such as MnS and TiVCr found in the steel have a critical influence on localized corrosion. The corrosion mechanism of the steel in seawater is discussed.\",\"PeriodicalId\":10693,\"journal\":{\"name\":\"Corrosion and Materials Degradation\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion and Materials Degradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmd3010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd3010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

锚链腐蚀被认为是海洋系泊系统面临的主要威胁之一。局部腐蚀甚至比均匀腐蚀更危险,因为它可能不会表现出明显的质量损失,但它会引起应力集中,并在力的作用下引发裂缝,导致锚链加速退化。钢在海水中的局部腐蚀受多种因素的影响,如钢的局部非均质性、局部电化学和微生物环境等。它很难预测,其机制也不完全清楚。本研究旨在研究海水中系泊锚链钢局部腐蚀的机理,有助于寻找相应的监测工具和缓解方法。研究了R4级链钢在人工海水和含微生物的人工海水中的腐蚀行为。采用动电位极化、线性极化电阻测量和电化学阻抗谱等方法研究了钢的腐蚀行为。利用扫描电镜和能谱仪对钢的夹杂物和成分等微观组织进行了研究。用荧光显微镜观察微生物细胞。用光镜观察了腐蚀形态和坑的几何形状。在有细菌存在的海水中,钢的局部腐蚀速率远高于均匀腐蚀速率。在局部腐蚀的情况下,采用统一的腐蚀测量技术和公式不具有代表性。必须引入具有代表性的区域以使物理结果与测量结果相匹配。在钢中发现的MnS和TiVCr等夹杂物对局部腐蚀有重要影响。讨论了钢在海水中的腐蚀机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localized Corrosion of Mooring Chain Steel in Seawater
Corrosion of mooring chains is regarded as one of main threats to the offshore mooring systems. Localized corrosion is even more dangerous than uniform corrosion because it may not show significant mass loss but it can cause stress concentration and initiate cracks under force, leading to accelerated degradation of mooring chains. Localized corrosion of steel in seawater is influenced by many factors such as the local heterogeneities of the steel, and the local electrochemical and microbiological environments. It is difficult to predict and the mechanism is not fully understood. The aim of this work was to study the mechanism of localized corrosion on mooring chain steel in seawater which is helpful in the search for corresponding monitoring tools and mitigation methods. The corrosion behavior of chain steel grade R4 was studied in artificial seawater and artificial seawater containing microorganisms collected from a practice field. The corrosion behavior of the steel was studied using different techniques such as potentiodynamic polarization, linear polarization resistance measurements and electrochemical impedance spectroscopy. The microstructures such as inclusions and compositions of the chain steel were studied using SEM and EDS. The microbial cells were observed using epi-fluorescence microscopy. The corrosion morphology and pit geometry were investigated using photo-microscopy. The localized corrosion rate has been found to be much higher than the uniform corrosion rate of the steel in the seawater in the presence of bacteria. In the case of localized corrosion, applying uniform corrosion measurement techniques and formulas is not considered representative. The representative areas have to be introduced to match physical results with the measurements. Inclusions, such as MnS and TiVCr found in the steel have a critical influence on localized corrosion. The corrosion mechanism of the steel in seawater is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Influence of Isothermal Annealing in the 600 to 750 °C Range on the Degradation of SAF 2205 Duplex Stainless Steel Unraveling the Corrosion of the Ti–6Al–4V Orthopedic Alloy in Phosphate-Buffered Saline (PBS) Solution: Influence of Frequency and Potential Impact of the Delay Period between Electrochemical Hydrogen Charging and Tensile Testing on the Mechanical Properties of Mild Steel Mechanistic Analysis of Hydrogen Evolution Reaction on Stationary Polycrystalline Gold Electrodes in H2SO4 Solutions In-Situ AFM Studies of Surfactant Adsorption on Stainless Steel Surfaces during Electrochemical Polarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1