{"title":"寻找相对论性重离子碰撞中的手性磁效应","authors":"Jie-Cheng Zhao","doi":"10.1142/S0217751X18300107","DOIUrl":null,"url":null,"abstract":"Relativistic heavy-ion collisions provide an ideal environment to study the emergent phenomena in quantum chromodynamics (QCD). The chiral magnetic effect (CME) is one of the most interesting, arising from the topological charge fluctuations of QCD vacua, immersed in a strong magnetic field. Since the first measurement nearly a decade ago of the possibly CME-induced charge correlation, extensive studies have been devoted to background contributions to those measurements. Many new ideas and techniques have been developed to reduce or eliminate the backgrounds. This article reviews these developments and the overall progress in the search for the CME.","PeriodicalId":8464,"journal":{"name":"arXiv: Nuclear Experiment","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Search for the Chiral Magnetic Effect in Relativistic Heavy-Ion Collisions\",\"authors\":\"Jie-Cheng Zhao\",\"doi\":\"10.1142/S0217751X18300107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relativistic heavy-ion collisions provide an ideal environment to study the emergent phenomena in quantum chromodynamics (QCD). The chiral magnetic effect (CME) is one of the most interesting, arising from the topological charge fluctuations of QCD vacua, immersed in a strong magnetic field. Since the first measurement nearly a decade ago of the possibly CME-induced charge correlation, extensive studies have been devoted to background contributions to those measurements. Many new ideas and techniques have been developed to reduce or eliminate the backgrounds. This article reviews these developments and the overall progress in the search for the CME.\",\"PeriodicalId\":8464,\"journal\":{\"name\":\"arXiv: Nuclear Experiment\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Nuclear Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217751X18300107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X18300107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Search for the Chiral Magnetic Effect in Relativistic Heavy-Ion Collisions
Relativistic heavy-ion collisions provide an ideal environment to study the emergent phenomena in quantum chromodynamics (QCD). The chiral magnetic effect (CME) is one of the most interesting, arising from the topological charge fluctuations of QCD vacua, immersed in a strong magnetic field. Since the first measurement nearly a decade ago of the possibly CME-induced charge correlation, extensive studies have been devoted to background contributions to those measurements. Many new ideas and techniques have been developed to reduce or eliminate the backgrounds. This article reviews these developments and the overall progress in the search for the CME.