非均质岩石两相流特性在高级地层评价中的实验研究

P. Aérens, C. Torres‐Verdín, D. Espinoza
{"title":"非均质岩石两相流特性在高级地层评价中的实验研究","authors":"P. Aérens, C. Torres‐Verdín, D. Espinoza","doi":"10.2118/206334-ms","DOIUrl":null,"url":null,"abstract":"\n An uncommon facet of Formation Evaluation is the assessment of flow-related in situ properties of rocks. Most of the models used to describe two-phase flow properties of porous rocks assume homogeneous and/or isotropic media, which is hardly the case with actual reservoir rocks, regardless of scale; carbonates and grain-laminated sandstones are but two common examples of this situation. The degree of spatial complexity of rocks and its effect on the mobility of hydrocarbons are of paramount importance for the description of multiphase fluid flow in most contemporary reservoirs. There is thus a need for experimental and numerical methods that integrate all salient details about fluid-fluid and rock-fluid interactions. Such hybrid, laboratory-simulation projects are necessary to develop realistic models of fractional flow, i.e., saturation-dependent capillary pressure and relative permeability.\n We document a new high-resolution visualization technique that provides experimental insight to quantify fluid saturation patterns in heterogeneous rocks and allows for the evaluation of effective two-phase flow properties. The experimental apparatus consists of an X-ray microfocus scanner and an automated syringe pump. Rather than using traditional cylindrical cores, thin rectangular rock samples are examined, their thickness being one order of magnitude smaller than the remaining two dimensions. During the experiment, the core is scanned quasi-continuously while the fluids are being injected, allowing for time-lapse visualization of the flood front. Numerical simulations are then conducted to match the experimental data and quantify effective saturation-dependent relative permeability and capillary pressure.\n Experimental results indicate that flow patterns and in situ saturations are highly dependent on the nature of the heterogeneity and bedding-plane orientation during both imbibition and drainage cycles. In homogeneous rocks, fluid displacement is piston-like, as predicted by the Buckley-Leverett theory of fractional flow. Assessment of capillary pressure and relative permeability is performed by examining the time-lapse water saturation profiles. In spatially complex rocks, high-resolution time-lapse images reveal preferential flow paths along high permeability sections and a lowered sweep efficiency.\n Our experimental procedure emphasizes that capillary pressure and transmissibility differences play an important role in fluid-saturation distribution and sweep efficiency at late times. The method is fast and reliable to assess mixing laws for fluid-transport properties of rocks in spatially complex formations.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation of Two-Phase Flow Properties of Heterogeneous Rocks for Advanced Formation Evaluation\",\"authors\":\"P. Aérens, C. Torres‐Verdín, D. Espinoza\",\"doi\":\"10.2118/206334-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An uncommon facet of Formation Evaluation is the assessment of flow-related in situ properties of rocks. Most of the models used to describe two-phase flow properties of porous rocks assume homogeneous and/or isotropic media, which is hardly the case with actual reservoir rocks, regardless of scale; carbonates and grain-laminated sandstones are but two common examples of this situation. The degree of spatial complexity of rocks and its effect on the mobility of hydrocarbons are of paramount importance for the description of multiphase fluid flow in most contemporary reservoirs. There is thus a need for experimental and numerical methods that integrate all salient details about fluid-fluid and rock-fluid interactions. Such hybrid, laboratory-simulation projects are necessary to develop realistic models of fractional flow, i.e., saturation-dependent capillary pressure and relative permeability.\\n We document a new high-resolution visualization technique that provides experimental insight to quantify fluid saturation patterns in heterogeneous rocks and allows for the evaluation of effective two-phase flow properties. The experimental apparatus consists of an X-ray microfocus scanner and an automated syringe pump. Rather than using traditional cylindrical cores, thin rectangular rock samples are examined, their thickness being one order of magnitude smaller than the remaining two dimensions. During the experiment, the core is scanned quasi-continuously while the fluids are being injected, allowing for time-lapse visualization of the flood front. Numerical simulations are then conducted to match the experimental data and quantify effective saturation-dependent relative permeability and capillary pressure.\\n Experimental results indicate that flow patterns and in situ saturations are highly dependent on the nature of the heterogeneity and bedding-plane orientation during both imbibition and drainage cycles. In homogeneous rocks, fluid displacement is piston-like, as predicted by the Buckley-Leverett theory of fractional flow. Assessment of capillary pressure and relative permeability is performed by examining the time-lapse water saturation profiles. In spatially complex rocks, high-resolution time-lapse images reveal preferential flow paths along high permeability sections and a lowered sweep efficiency.\\n Our experimental procedure emphasizes that capillary pressure and transmissibility differences play an important role in fluid-saturation distribution and sweep efficiency at late times. The method is fast and reliable to assess mixing laws for fluid-transport properties of rocks in spatially complex formations.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206334-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206334-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地层评价中一个不常见的方面是评价岩石与流动有关的原位性质。大多数用于描述多孔岩石两相流特性的模型都假定介质均质和/或各向同性,而对于实际的储集岩石,无论规模如何,这几乎是不可能的;碳酸盐和颗粒层状砂岩就是这种情况的两个常见例子。岩石的空间复杂程度及其对油气流动性的影响对于描述大多数现代油藏的多相流体流动具有至关重要的意义。因此,需要实验和数值方法来整合流体-流体和岩石-流体相互作用的所有重要细节。这种混合的实验室模拟项目对于建立真实的分流模型(即依赖于饱和度的毛细管压力和相对渗透率)是必要的。我们记录了一种新的高分辨率可视化技术,该技术提供了量化非均质岩石中流体饱和度模式的实验见解,并允许评估有效的两相流特性。实验装置由x射线微聚焦扫描仪和自动注射泵组成。不是使用传统的圆柱形岩心,而是检查薄的矩形岩石样本,它们的厚度比剩余的两个维度小一个数量级。在实验过程中,注入流体时对岩心进行准连续扫描,从而实现对洪水前沿的延时可视化。然后进行数值模拟以匹配实验数据,量化有效饱和度相关的相对渗透率和毛管压力。实验结果表明,在吸吸和排水循环过程中,流动模式和原位饱和度高度依赖于非均质性和层理面取向的性质。在均质岩石中,流体位移是活塞式的,正如巴克利-莱弗里特分流理论所预测的那样。通过检查时移含水饱和度曲线来评估毛细管压力和相对渗透率。在空间复杂的岩石中,高分辨率延时图像揭示了沿高渗透率剖面的优先流动路径和较低的波及效率。我们的实验过程强调了毛管压力和透射率差异在后期流体饱和度分布和波及效率中起着重要作用。该方法可快速、可靠地评价空间复杂地层中岩石流体输运性质的混合规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigation of Two-Phase Flow Properties of Heterogeneous Rocks for Advanced Formation Evaluation
An uncommon facet of Formation Evaluation is the assessment of flow-related in situ properties of rocks. Most of the models used to describe two-phase flow properties of porous rocks assume homogeneous and/or isotropic media, which is hardly the case with actual reservoir rocks, regardless of scale; carbonates and grain-laminated sandstones are but two common examples of this situation. The degree of spatial complexity of rocks and its effect on the mobility of hydrocarbons are of paramount importance for the description of multiphase fluid flow in most contemporary reservoirs. There is thus a need for experimental and numerical methods that integrate all salient details about fluid-fluid and rock-fluid interactions. Such hybrid, laboratory-simulation projects are necessary to develop realistic models of fractional flow, i.e., saturation-dependent capillary pressure and relative permeability. We document a new high-resolution visualization technique that provides experimental insight to quantify fluid saturation patterns in heterogeneous rocks and allows for the evaluation of effective two-phase flow properties. The experimental apparatus consists of an X-ray microfocus scanner and an automated syringe pump. Rather than using traditional cylindrical cores, thin rectangular rock samples are examined, their thickness being one order of magnitude smaller than the remaining two dimensions. During the experiment, the core is scanned quasi-continuously while the fluids are being injected, allowing for time-lapse visualization of the flood front. Numerical simulations are then conducted to match the experimental data and quantify effective saturation-dependent relative permeability and capillary pressure. Experimental results indicate that flow patterns and in situ saturations are highly dependent on the nature of the heterogeneity and bedding-plane orientation during both imbibition and drainage cycles. In homogeneous rocks, fluid displacement is piston-like, as predicted by the Buckley-Leverett theory of fractional flow. Assessment of capillary pressure and relative permeability is performed by examining the time-lapse water saturation profiles. In spatially complex rocks, high-resolution time-lapse images reveal preferential flow paths along high permeability sections and a lowered sweep efficiency. Our experimental procedure emphasizes that capillary pressure and transmissibility differences play an important role in fluid-saturation distribution and sweep efficiency at late times. The method is fast and reliable to assess mixing laws for fluid-transport properties of rocks in spatially complex formations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of Wettability Alteration from Alkali/Nanoparticles/Polymer Flooding - Integrating Data of Imbibition, Contact Angle and Interfacial-Tension to Screen Injection Agents Benchmarking and Field-Testing of the Distributed Quasi-Newton Derivative-Free Optimization Method for Field Development Optimization Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test Four Simple Questions: Decision-Centered Risk and Project Management Gas Migration in Wellbores During Pressurized Mud Cap Drilling PMCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1