具有阈值效应的因子增强预测回归的推理

Yayi Yan, Tingting Cheng
{"title":"具有阈值效应的因子增强预测回归的推理","authors":"Yayi Yan, Tingting Cheng","doi":"10.2139/ssrn.3389793","DOIUrl":null,"url":null,"abstract":"This paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters, and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through applications to forecasting stock market returns and the annual growth rate of industrial production, respectively.","PeriodicalId":11036,"journal":{"name":"Demand & Supply in Health Economics eJournal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference for Factor-Augmented Forecasting Regressions with Threshold effects\",\"authors\":\"Yayi Yan, Tingting Cheng\",\"doi\":\"10.2139/ssrn.3389793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters, and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through applications to forecasting stock market returns and the annual growth rate of industrial production, respectively.\",\"PeriodicalId\":11036,\"journal\":{\"name\":\"Demand & Supply in Health Economics eJournal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demand & Supply in Health Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3389793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demand & Supply in Health Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3389793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种存在阈值效应的因子增强预测回归模型。我们考虑了回归参数的最小二乘估计,并建立了斜率系数和阈值参数估计的渐近理论。预测区间也被构造为因子增强预测。此外,我们分别为阈值参数的检验开发了似然比统计量,为阈值效应的存在性检验开发了sup-Wald检验统计量。仿真结果表明,所提出的估计方法和测试程序在有限的样本下都能很好地工作。最后,我们通过分别预测股票市场收益和工业生产年增长率来证明该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference for Factor-Augmented Forecasting Regressions with Threshold effects
This paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters, and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through applications to forecasting stock market returns and the annual growth rate of industrial production, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Procurement Institutions and Essential Drug Supply in Low and Middle-Income Countries Watching the Grass Grow: Does Recreational Cannabis Legalization Affect Labor Outcomes? Decomposition of Clinical Disparities with Machine Learning Economic Consequences of Hospital Closures The Price-Leverage Covariation as a Measure of the Response of the Leverage Effect To Price and Volatility Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1