MHD纳米流体在辐射和化学反应作用下产热流动的相似解

G. Palani, A. Arutchelvi
{"title":"MHD纳米流体在辐射和化学反应作用下产热流动的相似解","authors":"G. Palani, A. Arutchelvi","doi":"10.59441/ijame-2023-0007","DOIUrl":null,"url":null,"abstract":"An analysis has been carried out to study the two-dimensional free convective boundary layer MHD nanofluid flow past an inclined plate with heat generation, chemical reaction and radiation effects under convective boundary conditions. The partial differential equations describing the flow are coupled nonlinear. They have been reduced to nonlinear ordinary differential equations by utilizing a similarity transformation, which is then solved numerically with the aid of the Runge-Kutta-based shooting technique. Graphs depict the influence of different controlling factors on the velocity, temperature, and concentration profiles. Numerical findings for skin friction, Nusselt number and Sherwood number are reviewed for distinct physical parameter values. In a limited sense, there is a good correlation between the current study's results and those of the earlier published work.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity solution for MHD nanofluid flow with heat generation in the presence of radiation and chemical reaction effects\",\"authors\":\"G. Palani, A. Arutchelvi\",\"doi\":\"10.59441/ijame-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis has been carried out to study the two-dimensional free convective boundary layer MHD nanofluid flow past an inclined plate with heat generation, chemical reaction and radiation effects under convective boundary conditions. The partial differential equations describing the flow are coupled nonlinear. They have been reduced to nonlinear ordinary differential equations by utilizing a similarity transformation, which is then solved numerically with the aid of the Runge-Kutta-based shooting technique. Graphs depict the influence of different controlling factors on the velocity, temperature, and concentration profiles. Numerical findings for skin friction, Nusselt number and Sherwood number are reviewed for distinct physical parameter values. In a limited sense, there is a good correlation between the current study's results and those of the earlier published work.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文对二维自由对流边界层MHD纳米流体在对流边界条件下的热生成、化学反应和辐射效应进行了分析。描述流动的偏微分方程是非线性耦合的。利用相似变换将它们简化为非线性常微分方程,然后借助基于龙格-库塔的射击技术进行数值求解。图表描述了不同控制因素对速度、温度和浓度分布的影响。对不同物理参数值的皮肤摩擦、努塞尔数和舍伍德数的数值结果进行了回顾。在有限的意义上,目前的研究结果与早期发表的研究结果有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similarity solution for MHD nanofluid flow with heat generation in the presence of radiation and chemical reaction effects
An analysis has been carried out to study the two-dimensional free convective boundary layer MHD nanofluid flow past an inclined plate with heat generation, chemical reaction and radiation effects under convective boundary conditions. The partial differential equations describing the flow are coupled nonlinear. They have been reduced to nonlinear ordinary differential equations by utilizing a similarity transformation, which is then solved numerically with the aid of the Runge-Kutta-based shooting technique. Graphs depict the influence of different controlling factors on the velocity, temperature, and concentration profiles. Numerical findings for skin friction, Nusselt number and Sherwood number are reviewed for distinct physical parameter values. In a limited sense, there is a good correlation between the current study's results and those of the earlier published work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1