重离子碰撞中的集体现象

Slavica Brkić, M. Dželalija
{"title":"重离子碰撞中的集体现象","authors":"Slavica Brkić, M. Dželalija","doi":"10.13189/UJPA.2017.110504","DOIUrl":null,"url":null,"abstract":"To create conditions which ruled one billionth of a second after the Big Bang, it is necessary to heat and compact the nuclear matter. During the first microseconds after the Big Bang the universe went through such a phase transition at very high temperatures but very low net baryon density. At very high temperatures or densities, the hadrons melt and their constituents, the quarks and gluons, form a new phase of matter, the so called quark-gluon plasma. Relativistic heavy ion collisions aim to create a quark gluon plasma where quarks and gluons can move freely over volumes that are large in comparison to the typical size of a hadron. When the particles collide at high energies, it leads to the conversion of particle collision participants in a much heavier particle. If the energy density is large enough, after a collision occurs the formation of quark-gluon plasma. In the dense nuclear medium, it comes to collective phenomena such as increased production of strangeness, damping charmonium and collective motion of particles. In nuclear medium, it comes to individual collision of quarks, which also hadronize. Using simulation package Pythia, we analyzed the reaction system that results in individual collisions of quarks and antiquarks, and emergence of collective phenomena.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"231 1","pages":"154-161"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective Phenomena in Heavy Ion Collisions\",\"authors\":\"Slavica Brkić, M. Dželalija\",\"doi\":\"10.13189/UJPA.2017.110504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To create conditions which ruled one billionth of a second after the Big Bang, it is necessary to heat and compact the nuclear matter. During the first microseconds after the Big Bang the universe went through such a phase transition at very high temperatures but very low net baryon density. At very high temperatures or densities, the hadrons melt and their constituents, the quarks and gluons, form a new phase of matter, the so called quark-gluon plasma. Relativistic heavy ion collisions aim to create a quark gluon plasma where quarks and gluons can move freely over volumes that are large in comparison to the typical size of a hadron. When the particles collide at high energies, it leads to the conversion of particle collision participants in a much heavier particle. If the energy density is large enough, after a collision occurs the formation of quark-gluon plasma. In the dense nuclear medium, it comes to collective phenomena such as increased production of strangeness, damping charmonium and collective motion of particles. In nuclear medium, it comes to individual collision of quarks, which also hadronize. Using simulation package Pythia, we analyzed the reaction system that results in individual collisions of quarks and antiquarks, and emergence of collective phenomena.\",\"PeriodicalId\":23443,\"journal\":{\"name\":\"Universal Journal of Physics and Application\",\"volume\":\"231 1\",\"pages\":\"154-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Physics and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJPA.2017.110504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJPA.2017.110504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了创造大爆炸后十亿分之一秒的条件,必须加热和压缩核物质。在大爆炸后的第一个微秒内,宇宙经历了这样一个相变,温度很高,但净重子密度很低。在非常高的温度或密度下,强子熔化,它们的组成部分,夸克和胶子,形成物质的新阶段,即所谓的夸克-胶子等离子体。相对论重离子碰撞的目标是创造一种夸克胶子等离子体,在这种等离子体中,夸克和胶子可以在比典型强子大得多的体积上自由移动。当粒子以高能量碰撞时,它会导致粒子碰撞参与者转化为更重的粒子。如果能量密度足够大,碰撞后会形成夸克-胶子等离子体。在致密的核介质中,它涉及到奇异度的增加、谐波的衰减和粒子的集体运动等集体现象。在核介质中,它涉及到单个夸克的碰撞,这些夸克也发生强子化。利用模拟软件包Pythia,我们分析了导致夸克和反夸克个体碰撞以及集体现象出现的反应体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collective Phenomena in Heavy Ion Collisions
To create conditions which ruled one billionth of a second after the Big Bang, it is necessary to heat and compact the nuclear matter. During the first microseconds after the Big Bang the universe went through such a phase transition at very high temperatures but very low net baryon density. At very high temperatures or densities, the hadrons melt and their constituents, the quarks and gluons, form a new phase of matter, the so called quark-gluon plasma. Relativistic heavy ion collisions aim to create a quark gluon plasma where quarks and gluons can move freely over volumes that are large in comparison to the typical size of a hadron. When the particles collide at high energies, it leads to the conversion of particle collision participants in a much heavier particle. If the energy density is large enough, after a collision occurs the formation of quark-gluon plasma. In the dense nuclear medium, it comes to collective phenomena such as increased production of strangeness, damping charmonium and collective motion of particles. In nuclear medium, it comes to individual collision of quarks, which also hadronize. Using simulation package Pythia, we analyzed the reaction system that results in individual collisions of quarks and antiquarks, and emergence of collective phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Disk of Concave Mirrors: An Experiment of the Light with Contradictory Formulas The NOW of time and the Pioneer Anomaly Tachyons, the Four-Momentum Formalism and Simultaneity Killing Vector Fields and Conserved Currents on Rotationally Symmetric Space-time Discovery of Ambiguity in the Traditional Norms of Specifying Physical Quantities along the Axes of Coordinates in Drawing Data Based Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1