将非结构化数据分类为自然语言文本和技术信息

T. Merten, Bastian Mager, Simone Bürsner, B. Paech
{"title":"将非结构化数据分类为自然语言文本和技术信息","authors":"T. Merten, Bastian Mager, Simone Bürsner, B. Paech","doi":"10.1145/2597073.2597112","DOIUrl":null,"url":null,"abstract":"Software repository data, for example in issue tracking systems, include natural language text and technical information, which includes anything from log files via code snippets to stack traces. \n However, data mining is often only interested in one of the two types e.g. in natural language text when looking at text mining. Regardless of which type is being investigated, any techniques used have to deal with noise caused by fragments of the other type i.e. methods interested in natural language have to deal with technical fragments and vice versa. \n This paper proposes an approach to classify unstructured data, e.g. development documents, into natural language text and technical information using a mixture of text heuristics and agglomerative hierarchical clustering. \n The approach was evaluated using 225 manually annotated text passages from developer emails and issue tracker data. Using white space tokenization as a basis, the overall precision of the approach is 0.84 and the recall is 0.85.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"41 1","pages":"300-303"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classifying unstructured data into natural language text and technical information\",\"authors\":\"T. Merten, Bastian Mager, Simone Bürsner, B. Paech\",\"doi\":\"10.1145/2597073.2597112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software repository data, for example in issue tracking systems, include natural language text and technical information, which includes anything from log files via code snippets to stack traces. \\n However, data mining is often only interested in one of the two types e.g. in natural language text when looking at text mining. Regardless of which type is being investigated, any techniques used have to deal with noise caused by fragments of the other type i.e. methods interested in natural language have to deal with technical fragments and vice versa. \\n This paper proposes an approach to classify unstructured data, e.g. development documents, into natural language text and technical information using a mixture of text heuristics and agglomerative hierarchical clustering. \\n The approach was evaluated using 225 manually annotated text passages from developer emails and issue tracker data. Using white space tokenization as a basis, the overall precision of the approach is 0.84 and the recall is 0.85.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"41 1\",\"pages\":\"300-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597073.2597112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

例如,在问题跟踪系统中,软件存储库数据包括自然语言文本和技术信息,其中包括从日志文件到代码片段到堆栈跟踪的任何内容。然而,数据挖掘通常只对两种类型中的一种感兴趣,例如,在寻找文本挖掘时,在自然语言文本中。无论研究的是哪一种类型,所使用的任何技术都必须处理由其他类型的片段引起的噪声,即对自然语言感兴趣的方法必须处理技术片段,反之亦然。本文提出了一种将非结构化数据(如开发文档)分类为自然语言文本和技术信息的方法,该方法混合使用文本启发式和凝聚层次聚类。该方法使用来自开发人员电子邮件和问题跟踪器数据的225个手动注释的文本段落进行评估。使用空白标记作为基础,该方法的总体精度为0.84,召回率为0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying unstructured data into natural language text and technical information
Software repository data, for example in issue tracking systems, include natural language text and technical information, which includes anything from log files via code snippets to stack traces. However, data mining is often only interested in one of the two types e.g. in natural language text when looking at text mining. Regardless of which type is being investigated, any techniques used have to deal with noise caused by fragments of the other type i.e. methods interested in natural language have to deal with technical fragments and vice versa. This paper proposes an approach to classify unstructured data, e.g. development documents, into natural language text and technical information using a mixture of text heuristics and agglomerative hierarchical clustering. The approach was evaluated using 225 manually annotated text passages from developer emails and issue tracker data. Using white space tokenization as a basis, the overall precision of the approach is 0.84 and the recall is 0.85.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1