{"title":"基于芯片的微机械太赫兹光谱仪的研制","authors":"Xiaohuan Fu, K. Attenkofer, T.T.Y. Wong","doi":"10.1109/IRMMW-THZ.2011.6104948","DOIUrl":null,"url":null,"abstract":"We present a coplanar waveguide design with integrated photoconductive transceivers; the system is fabricated on a 1.4-μm-thick SiO2/Si3N4 membrane supported by a micromachined silicon substrate. LTG GaAs is used as photon absorbing material of the photoconductive switches allowing full electron mobility at strongly reduced carrier-lifetime. By combining this circuit with a bonded sample cell, we are able to measure transmitted, reflected intensity and its phase correlations. The system was characterized by theoretical calculation and simulations.","PeriodicalId":6353,"journal":{"name":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","volume":"36 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a chip-based micromachined THz-spectrometer\",\"authors\":\"Xiaohuan Fu, K. Attenkofer, T.T.Y. Wong\",\"doi\":\"10.1109/IRMMW-THZ.2011.6104948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a coplanar waveguide design with integrated photoconductive transceivers; the system is fabricated on a 1.4-μm-thick SiO2/Si3N4 membrane supported by a micromachined silicon substrate. LTG GaAs is used as photon absorbing material of the photoconductive switches allowing full electron mobility at strongly reduced carrier-lifetime. By combining this circuit with a bonded sample cell, we are able to measure transmitted, reflected intensity and its phase correlations. The system was characterized by theoretical calculation and simulations.\",\"PeriodicalId\":6353,\"journal\":{\"name\":\"2011 International Conference on Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"36 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THZ.2011.6104948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2011.6104948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a chip-based micromachined THz-spectrometer
We present a coplanar waveguide design with integrated photoconductive transceivers; the system is fabricated on a 1.4-μm-thick SiO2/Si3N4 membrane supported by a micromachined silicon substrate. LTG GaAs is used as photon absorbing material of the photoconductive switches allowing full electron mobility at strongly reduced carrier-lifetime. By combining this circuit with a bonded sample cell, we are able to measure transmitted, reflected intensity and its phase correlations. The system was characterized by theoretical calculation and simulations.