混合脉冲和切换神经网络

Chuandong Li, G. Feng, Tingwen Huang
{"title":"混合脉冲和切换神经网络","authors":"Chuandong Li, G. Feng, Tingwen Huang","doi":"10.1109/TSMCB.2008.928233","DOIUrl":null,"url":null,"abstract":"This paper formulates and studies a model of hybrid impulsive and switching Hopfield neural networks (NNs). Using switching Lyapunov functions and a generalized Halanay inequality, some general criteria, which characterize the impulse and switching effects in aggregated form, for asymptotic and exponential stability of such NNs with arbitrary and conditioned impulsive switching are established. Several numerical examples are given for illustration and interpretation of the theoretical results.","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":"214 1","pages":"1549-1560"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"On Hybrid Impulsive and Switching Neural Networks\",\"authors\":\"Chuandong Li, G. Feng, Tingwen Huang\",\"doi\":\"10.1109/TSMCB.2008.928233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper formulates and studies a model of hybrid impulsive and switching Hopfield neural networks (NNs). Using switching Lyapunov functions and a generalized Halanay inequality, some general criteria, which characterize the impulse and switching effects in aggregated form, for asymptotic and exponential stability of such NNs with arbitrary and conditioned impulsive switching are established. Several numerical examples are given for illustration and interpretation of the theoretical results.\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\"214 1\",\"pages\":\"1549-1560\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2008.928233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2008.928233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

本文建立并研究了一种脉冲和开关混合Hopfield神经网络模型。利用切换Lyapunov函数和广义Halanay不等式,建立了具有任意条件脉冲切换的神经网络的渐近稳定性和指数稳定性的一般准则,以聚合形式描述了脉冲和切换效应。给出了几个数值算例来说明和解释理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Hybrid Impulsive and Switching Neural Networks
This paper formulates and studies a model of hybrid impulsive and switching Hopfield neural networks (NNs). Using switching Lyapunov functions and a generalized Halanay inequality, some general criteria, which characterize the impulse and switching effects in aggregated form, for asymptotic and exponential stability of such NNs with arbitrary and conditioned impulsive switching are established. Several numerical examples are given for illustration and interpretation of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
期刊最新文献
Alternative Tests for the Selection of Model Variables Operations Research Optimization of neural networks using variable structure systems. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1