用概率谓词加速机器学习推理

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, S. Chaudhuri
{"title":"用概率谓词加速机器学习推理","authors":"Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, S. Chaudhuri","doi":"10.1145/3183713.3183751","DOIUrl":null,"url":null,"abstract":"Classic query optimization techniques, including predicate pushdown, are of limited use for machine learning inference queries, because the user-defined functions (UDFs) which extract relational columns from unstructured inputs are often very expensive; query predicates will remain stuck behind these UDFs if they happen to require relational columns that are generated by the UDFs. In this work, we demonstrate constructing and applying probabilistic predicates to filter data blobs that do not satisfy the query predicate; such filtering is parametrized to different target accuracies. Furthermore, to support complex predicates and to avoid per-query training, we augment a cost-based query optimizer to choose plans with appropriate combinations of simpler probabilistic predicates. Experiments with several machine learning workloads on a big-data cluster show that query processing improves by as much as 10x.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Accelerating Machine Learning Inference with Probabilistic Predicates\",\"authors\":\"Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, S. Chaudhuri\",\"doi\":\"10.1145/3183713.3183751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classic query optimization techniques, including predicate pushdown, are of limited use for machine learning inference queries, because the user-defined functions (UDFs) which extract relational columns from unstructured inputs are often very expensive; query predicates will remain stuck behind these UDFs if they happen to require relational columns that are generated by the UDFs. In this work, we demonstrate constructing and applying probabilistic predicates to filter data blobs that do not satisfy the query predicate; such filtering is parametrized to different target accuracies. Furthermore, to support complex predicates and to avoid per-query training, we augment a cost-based query optimizer to choose plans with appropriate combinations of simpler probabilistic predicates. Experiments with several machine learning workloads on a big-data cluster show that query processing improves by as much as 10x.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3183751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

经典的查询优化技术,包括谓词下推,对于机器学习推理查询的使用是有限的,因为从非结构化输入中提取关系列的用户定义函数(udf)通常非常昂贵;如果查询谓词恰好需要由udf生成的关系列,则查询谓词将保留在这些udf后面。在这项工作中,我们演示了构造和应用概率谓词来过滤不满足查询谓词的数据团;这种滤波是根据不同的目标精度参数化的。此外,为了支持复杂的谓词并避免对每个查询进行训练,我们增加了一个基于成本的查询优化器,以使用更简单的概率谓词的适当组合来选择计划。在大数据集群上对几个机器学习工作负载进行的实验表明,查询处理能力提高了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Machine Learning Inference with Probabilistic Predicates
Classic query optimization techniques, including predicate pushdown, are of limited use for machine learning inference queries, because the user-defined functions (UDFs) which extract relational columns from unstructured inputs are often very expensive; query predicates will remain stuck behind these UDFs if they happen to require relational columns that are generated by the UDFs. In this work, we demonstrate constructing and applying probabilistic predicates to filter data blobs that do not satisfy the query predicate; such filtering is parametrized to different target accuracies. Furthermore, to support complex predicates and to avoid per-query training, we augment a cost-based query optimizer to choose plans with appropriate combinations of simpler probabilistic predicates. Experiments with several machine learning workloads on a big-data cluster show that query processing improves by as much as 10x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1