利用实时搜索引擎查询地震探测:结果摘要

Qi Zhang, Hengshu Zhu, Qi Liu, Enhong Chen, Hui Xiong
{"title":"利用实时搜索引擎查询地震探测:结果摘要","authors":"Qi Zhang, Hengshu Zhu, Qi Liu, Enhong Chen, Hui Xiong","doi":"10.1145/3453842","DOIUrl":null,"url":null,"abstract":"Online search engine has been widely regarded as the most convenient approach for information acquisition. Indeed, the intensive information-seeking behaviors of search engine users make it possible to exploit search engine queries as effective “crowd sensors” for event monitoring. While some researchers have investigated the feasibility of using search engine queries for coarse-grained event analysis, the capability of search engine queries for real-time event detection has been largely neglected. To this end, in this article, we introduce a large-scale and systematic study on exploiting real-time search engine queries for outbreak event detection, with a focus on earthquake rapid reporting. In particular, we propose a realistic system of real-time earthquake detection through monitoring millions of queries related to earthquakes from a dominant online search engine in China. Specifically, we first investigate a large set of queries for selecting the representative queries that are highly correlated with the outbreak of earthquakes. Then, based on the real-time streams of selected queries, we design a novel machine learning–enhanced two-stage burst detection approach for detecting earthquake events. Meanwhile, the location of an earthquake epicenter can be accurately estimated based on the spatial-temporal distribution of search engine queries. Finally, through the extensive comparison with earthquake catalogs from China Earthquake Networks Center, 2015, the detection precision of our system can achieve 87.9%, and the accuracy of location estimation (province level) is 95.7%. In particular, 50% of successfully detected results can be found within 62 s after earthquake, and 50% of successful locations can be found within 25.5 km of seismic epicenter. Our system also found more than 23.3% extra earthquakes that were felt by people but not publicly released, 12.1% earthquake-like special outbreaks, and meanwhile, revealed many interesting findings, such as the typical query patterns of earthquake rumor and regular memorial events. Based on these results, our system can timely feed back information to the search engine users according to various cases and accelerate the information release of felt earthquakes.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"31 1","pages":"1 - 32"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploiting Real-time Search Engine Queries for Earthquake Detection: A Summary of Results\",\"authors\":\"Qi Zhang, Hengshu Zhu, Qi Liu, Enhong Chen, Hui Xiong\",\"doi\":\"10.1145/3453842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online search engine has been widely regarded as the most convenient approach for information acquisition. Indeed, the intensive information-seeking behaviors of search engine users make it possible to exploit search engine queries as effective “crowd sensors” for event monitoring. While some researchers have investigated the feasibility of using search engine queries for coarse-grained event analysis, the capability of search engine queries for real-time event detection has been largely neglected. To this end, in this article, we introduce a large-scale and systematic study on exploiting real-time search engine queries for outbreak event detection, with a focus on earthquake rapid reporting. In particular, we propose a realistic system of real-time earthquake detection through monitoring millions of queries related to earthquakes from a dominant online search engine in China. Specifically, we first investigate a large set of queries for selecting the representative queries that are highly correlated with the outbreak of earthquakes. Then, based on the real-time streams of selected queries, we design a novel machine learning–enhanced two-stage burst detection approach for detecting earthquake events. Meanwhile, the location of an earthquake epicenter can be accurately estimated based on the spatial-temporal distribution of search engine queries. Finally, through the extensive comparison with earthquake catalogs from China Earthquake Networks Center, 2015, the detection precision of our system can achieve 87.9%, and the accuracy of location estimation (province level) is 95.7%. In particular, 50% of successfully detected results can be found within 62 s after earthquake, and 50% of successful locations can be found within 25.5 km of seismic epicenter. Our system also found more than 23.3% extra earthquakes that were felt by people but not publicly released, 12.1% earthquake-like special outbreaks, and meanwhile, revealed many interesting findings, such as the typical query patterns of earthquake rumor and regular memorial events. Based on these results, our system can timely feed back information to the search engine users according to various cases and accelerate the information release of felt earthquakes.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"31 1\",\"pages\":\"1 - 32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在线搜索引擎已被广泛认为是最方便的信息获取方式。事实上,搜索引擎用户密集的信息寻求行为使得利用搜索引擎查询作为有效的“人群传感器”来监控事件成为可能。虽然一些研究人员已经研究了使用搜索引擎查询进行粗粒度事件分析的可行性,但搜索引擎查询进行实时事件检测的能力在很大程度上被忽视了。为此,在本文中,我们介绍了一项大规模、系统的研究,利用实时搜索引擎查询来检测爆发事件,重点是地震快速报告。特别是,我们提出了一个现实的实时地震检测系统,通过监测数以百万计的查询与地震有关的在线搜索引擎在中国占主导地位。具体来说,我们首先调查了一大批查询,以选择与地震爆发高度相关的代表性查询。然后,基于所选查询的实时流,我们设计了一种新的机器学习增强的两阶段突发检测方法来检测地震事件。同时,可以根据搜索引擎查询的时空分布准确估计地震震中的位置。最后,通过与中国地震台网中心2015年地震台刊的广泛对比,系统的探测精度可达到87.9%,定位精度(省级)达到95.7%。特别是,50%的成功探测结果可以在地震后62秒内找到,50%的成功探测位置可以在震中25.5公里内找到。我们的系统还发现了超过23.3%的人感觉到但未公开发布的额外地震,12.1%的类似地震的特殊爆发,同时还发现了许多有趣的发现,例如地震谣言的典型查询模式和定期纪念活动。基于这些结果,我们的系统可以根据各种情况及时向搜索引擎用户反馈信息,加快震感信息的发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Real-time Search Engine Queries for Earthquake Detection: A Summary of Results
Online search engine has been widely regarded as the most convenient approach for information acquisition. Indeed, the intensive information-seeking behaviors of search engine users make it possible to exploit search engine queries as effective “crowd sensors” for event monitoring. While some researchers have investigated the feasibility of using search engine queries for coarse-grained event analysis, the capability of search engine queries for real-time event detection has been largely neglected. To this end, in this article, we introduce a large-scale and systematic study on exploiting real-time search engine queries for outbreak event detection, with a focus on earthquake rapid reporting. In particular, we propose a realistic system of real-time earthquake detection through monitoring millions of queries related to earthquakes from a dominant online search engine in China. Specifically, we first investigate a large set of queries for selecting the representative queries that are highly correlated with the outbreak of earthquakes. Then, based on the real-time streams of selected queries, we design a novel machine learning–enhanced two-stage burst detection approach for detecting earthquake events. Meanwhile, the location of an earthquake epicenter can be accurately estimated based on the spatial-temporal distribution of search engine queries. Finally, through the extensive comparison with earthquake catalogs from China Earthquake Networks Center, 2015, the detection precision of our system can achieve 87.9%, and the accuracy of location estimation (province level) is 95.7%. In particular, 50% of successfully detected results can be found within 62 s after earthquake, and 50% of successful locations can be found within 25.5 km of seismic epicenter. Our system also found more than 23.3% extra earthquakes that were felt by people but not publicly released, 12.1% earthquake-like special outbreaks, and meanwhile, revealed many interesting findings, such as the typical query patterns of earthquake rumor and regular memorial events. Based on these results, our system can timely feed back information to the search engine users according to various cases and accelerate the information release of felt earthquakes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1