J. Torero, A. Majdalani, Cecilia Abecassis-Empis, Adam Cowlard
{"title":"重访车厢火灾","authors":"J. Torero, A. Majdalani, Cecilia Abecassis-Empis, Adam Cowlard","doi":"10.3801/IAFSS.FSS.11-28","DOIUrl":null,"url":null,"abstract":"Understanding the relevant behaviour of fire in buildings is critical for the continued provision of fire safety solutions as infrastructure continually evolves. Traditionally, new and improved understanding has helped define more accurate classifications and correspondingly, better prescriptive solutions. Among all the different concepts emerging from research into fire behaviour, the \"compartment fire\" is probably the one that has most influenced the evolution of the built environment. Initially, compartmentalization was exploited as a means of reducing the rate of fire spread in buildings. Through the observations acquired in fires, it was concluded that reducing spread rates enabled safe egress and a more effective intervention by the fire service. Thus, different forms of compartmentalization permeated through most prescriptive codes. Once fire behaviour within a compartment was conceptualized on the basis of scientific principles, the \"compartment fire\" framework became a means to establish, under certain specific circumstances, temperatures and thermal loads imposed by a fire to a building. This resulted not only in improved codes but also in a scientifically based methodology for the assessment of structural performance. The last three decades have however seen an evolution of the built environment away from compartmentalization while the \"compartment fire\" framework has remained. It is therefore necessary to revisit the knowledge underpinning this seminal approach to initiate discussion of its continued relevance and applicability to an increasingly non-compartmentalised built environment. This paper, through a review of classic literature and the description of some recent experimentation, aims to inform and encourage such discussion.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":"68 1","pages":"28-45"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Revisiting the Compartment Fire\",\"authors\":\"J. Torero, A. Majdalani, Cecilia Abecassis-Empis, Adam Cowlard\",\"doi\":\"10.3801/IAFSS.FSS.11-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the relevant behaviour of fire in buildings is critical for the continued provision of fire safety solutions as infrastructure continually evolves. Traditionally, new and improved understanding has helped define more accurate classifications and correspondingly, better prescriptive solutions. Among all the different concepts emerging from research into fire behaviour, the \\\"compartment fire\\\" is probably the one that has most influenced the evolution of the built environment. Initially, compartmentalization was exploited as a means of reducing the rate of fire spread in buildings. Through the observations acquired in fires, it was concluded that reducing spread rates enabled safe egress and a more effective intervention by the fire service. Thus, different forms of compartmentalization permeated through most prescriptive codes. Once fire behaviour within a compartment was conceptualized on the basis of scientific principles, the \\\"compartment fire\\\" framework became a means to establish, under certain specific circumstances, temperatures and thermal loads imposed by a fire to a building. This resulted not only in improved codes but also in a scientifically based methodology for the assessment of structural performance. The last three decades have however seen an evolution of the built environment away from compartmentalization while the \\\"compartment fire\\\" framework has remained. It is therefore necessary to revisit the knowledge underpinning this seminal approach to initiate discussion of its continued relevance and applicability to an increasingly non-compartmentalised built environment. This paper, through a review of classic literature and the description of some recent experimentation, aims to inform and encourage such discussion.\",\"PeriodicalId\":12145,\"journal\":{\"name\":\"Fire Safety Science\",\"volume\":\"68 1\",\"pages\":\"28-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3801/IAFSS.FSS.11-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/IAFSS.FSS.11-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the relevant behaviour of fire in buildings is critical for the continued provision of fire safety solutions as infrastructure continually evolves. Traditionally, new and improved understanding has helped define more accurate classifications and correspondingly, better prescriptive solutions. Among all the different concepts emerging from research into fire behaviour, the "compartment fire" is probably the one that has most influenced the evolution of the built environment. Initially, compartmentalization was exploited as a means of reducing the rate of fire spread in buildings. Through the observations acquired in fires, it was concluded that reducing spread rates enabled safe egress and a more effective intervention by the fire service. Thus, different forms of compartmentalization permeated through most prescriptive codes. Once fire behaviour within a compartment was conceptualized on the basis of scientific principles, the "compartment fire" framework became a means to establish, under certain specific circumstances, temperatures and thermal loads imposed by a fire to a building. This resulted not only in improved codes but also in a scientifically based methodology for the assessment of structural performance. The last three decades have however seen an evolution of the built environment away from compartmentalization while the "compartment fire" framework has remained. It is therefore necessary to revisit the knowledge underpinning this seminal approach to initiate discussion of its continued relevance and applicability to an increasingly non-compartmentalised built environment. This paper, through a review of classic literature and the description of some recent experimentation, aims to inform and encourage such discussion.