利用机器学习和CSI反馈预测5G新无线电无线信道路径增益和延迟

Ben Earle, A. Al-Habashna, Gabriel A. Wainer, Xingliang Li, Guoqiang Xue
{"title":"利用机器学习和CSI反馈预测5G新无线电无线信道路径增益和延迟","authors":"Ben Earle, A. Al-Habashna, Gabriel A. Wainer, Xingliang Li, Guoqiang Xue","doi":"10.23919/ANNSIM52504.2021.9552072","DOIUrl":null,"url":null,"abstract":"Next generation wireless communication systems use massive Multi Input Multi Output (m-MIMO) antenna arrays for their enhanced beamforming capabilities. Providing accurate Channel State Information (CSI) is vital for optimizing m-MIMO communication systems. The complexity of channel reconstruction grows exponentially with the number of antennas, causing traditional methods to become increasingly complicated. Machine-learning techniques can be a useful alternative for channel reconstruction using partial CSI feedback. This paper presents the results of a simulation study built using the MATLAB 5G Toolbox and a neural network trained using the simulated data. The simulator emulates a 5G channel to generate its path delays and gains, and the realistic CSI feedback. This data was used to train and test a neural network to estimate the dominant path gains and delays. The models showed promising results while operating on limited CSI data.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"8 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of 5G New Radio Wireless Channel Path Gains and Delays Using Machine Learning and CSI Feedback\",\"authors\":\"Ben Earle, A. Al-Habashna, Gabriel A. Wainer, Xingliang Li, Guoqiang Xue\",\"doi\":\"10.23919/ANNSIM52504.2021.9552072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next generation wireless communication systems use massive Multi Input Multi Output (m-MIMO) antenna arrays for their enhanced beamforming capabilities. Providing accurate Channel State Information (CSI) is vital for optimizing m-MIMO communication systems. The complexity of channel reconstruction grows exponentially with the number of antennas, causing traditional methods to become increasingly complicated. Machine-learning techniques can be a useful alternative for channel reconstruction using partial CSI feedback. This paper presents the results of a simulation study built using the MATLAB 5G Toolbox and a neural network trained using the simulated data. The simulator emulates a 5G channel to generate its path delays and gains, and the realistic CSI feedback. This data was used to train and test a neural network to estimate the dominant path gains and delays. The models showed promising results while operating on limited CSI data.\",\"PeriodicalId\":6782,\"journal\":{\"name\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"volume\":\"8 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ANNSIM52504.2021.9552072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

下一代无线通信系统使用大规模多输入多输出(m-MIMO)天线阵列来增强波束形成能力。提供准确的信道状态信息(CSI)对于优化m-MIMO通信系统至关重要。随着天线数量的增加,信道重建的复杂性呈指数级增长,使得传统的方法变得越来越复杂。机器学习技术可以成为使用部分CSI反馈进行信道重建的有用替代方法。本文介绍了利用MATLAB 5G工具箱构建的仿真研究结果和利用仿真数据训练的神经网络。该模拟器模拟了5G信道,以产生其路径延迟和增益,以及真实的CSI反馈。该数据用于训练和测试神经网络,以估计主导路径增益和延迟。这些模型在有限的CSI数据上显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of 5G New Radio Wireless Channel Path Gains and Delays Using Machine Learning and CSI Feedback
Next generation wireless communication systems use massive Multi Input Multi Output (m-MIMO) antenna arrays for their enhanced beamforming capabilities. Providing accurate Channel State Information (CSI) is vital for optimizing m-MIMO communication systems. The complexity of channel reconstruction grows exponentially with the number of antennas, causing traditional methods to become increasingly complicated. Machine-learning techniques can be a useful alternative for channel reconstruction using partial CSI feedback. This paper presents the results of a simulation study built using the MATLAB 5G Toolbox and a neural network trained using the simulated data. The simulator emulates a 5G channel to generate its path delays and gains, and the realistic CSI feedback. This data was used to train and test a neural network to estimate the dominant path gains and delays. The models showed promising results while operating on limited CSI data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Tutorial Introduction to Colored Petri Nets Framework for Model-Driven System Design and Engineering Decision of Learning Status Based on Modeling of the Information Measurement of Social Behavioral Tasks in Rhesus Monkeys Towards a Universal Representation of DEVS: A Metamodel-Based Definition of DEVS Formal Specification Evaluating Azure Kinect and Structure Mark-II 3D Surface Scanners for Clinical Chest Wall Deformity Assessment Automatically Combining Conceptual Models Using Semantic and Structural Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1