一个奇怪的学习模型与榆树模糊认知地图

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Uncertainty Fuzziness and Knowledge-Based Systems Pub Date : 2013-10-31 DOI:10.1142/S0218488513400163
Dong Huang, Zhiqi Shen
{"title":"一个奇怪的学习模型与榆树模糊认知地图","authors":"Dong Huang, Zhiqi Shen","doi":"10.1142/S0218488513400163","DOIUrl":null,"url":null,"abstract":"The design of fuzzy cognitive maps (FCMs) mainly relies on human knowledge, which implies subjectivity of the developed model. This affects the accuracy of an FCM significantly. In order to address this issue, we propose a novel learning model for FCMs in this paper. It achieves efficient learning by automatically adjusting the system parameters according to the environment. The learning model consists of extreme learning machine (ELM) and a curious model, where ELM learns from the modeled system and the curious model helps to further improve the performance of ELM. We use an example to illustrate the effectiveness of our model. The simulation results show that our model helps to improve the accuracy of FCMs.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"34 1","pages":"63-74"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A CURIOUS LEARNING MODEL WITH ELM FOR FUZZY COGNITIVE MAPS\",\"authors\":\"Dong Huang, Zhiqi Shen\",\"doi\":\"10.1142/S0218488513400163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of fuzzy cognitive maps (FCMs) mainly relies on human knowledge, which implies subjectivity of the developed model. This affects the accuracy of an FCM significantly. In order to address this issue, we propose a novel learning model for FCMs in this paper. It achieves efficient learning by automatically adjusting the system parameters according to the environment. The learning model consists of extreme learning machine (ELM) and a curious model, where ELM learns from the modeled system and the curious model helps to further improve the performance of ELM. We use an example to illustrate the effectiveness of our model. The simulation results show that our model helps to improve the accuracy of FCMs.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"34 1\",\"pages\":\"63-74\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488513400163\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

模糊认知地图的设计主要依赖于人的知识,这意味着所开发的模型具有主观性。这将显著影响FCM的精度。为了解决这一问题,本文提出了一种新的fcm学习模型。它通过根据环境自动调整系统参数来实现高效学习。学习模型由极限学习机(extreme learning machine, ELM)和好奇模型(curious model)组成,其中极限学习机从被建模的系统中学习,好奇模型有助于进一步提高ELM的性能。我们用一个例子来说明我们模型的有效性。仿真结果表明,该模型有助于提高fcm的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A CURIOUS LEARNING MODEL WITH ELM FOR FUZZY COGNITIVE MAPS
The design of fuzzy cognitive maps (FCMs) mainly relies on human knowledge, which implies subjectivity of the developed model. This affects the accuracy of an FCM significantly. In order to address this issue, we propose a novel learning model for FCMs in this paper. It achieves efficient learning by automatically adjusting the system parameters according to the environment. The learning model consists of extreme learning machine (ELM) and a curious model, where ELM learns from the modeled system and the curious model helps to further improve the performance of ELM. We use an example to illustrate the effectiveness of our model. The simulation results show that our model helps to improve the accuracy of FCMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
期刊最新文献
A Structure-Enhanced Heterogeneous Graph Representation Learning with Attention-Supplemented Embedding Fusion Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data PSO Based Constraint Optimization of Intuitionistic Fuzzy Shortest Path Problem in an Undirected Network Model Predictive Control for Interval Type-2 Fuzzy Systems with Unknown Time-Varying Delay in States and Input Vector An OWA Based MCDM Framework for Analyzing Multidimensional Twitter Data: A Case Study on the Citizen-Government Engagement During COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1