{"title":"动态期限结构模型的估计","authors":"G. Duffee, Richard Stanton","doi":"10.1142/S2010139212500085","DOIUrl":null,"url":null,"abstract":"We study the finite-sample properties of some of the standard techniques used to estimate modern term structure models. For sample sizes and models similar to those used in most empirical work, we reach three surprising conclusions. First, while maximum likelihood works well for simple models, it produces strongly biased parameter estimates when the model includes a flexible specification of the dynamics of interest rate risk. Second, despite having the same asymptotic efficiency as maximum likelihood, the small-sample performance of Efficient Method of Moments (a commonly used method for estimating complicated models) is unacceptable even in the simplest term structure settings. Third, the linearized Kalman filter is a tractable and reasonably accurate estimation technique, which we recommend in settings where maximum likelihood is impractical.","PeriodicalId":45339,"journal":{"name":"Quarterly Journal of Finance","volume":"44 1","pages":"1-51"},"PeriodicalIF":0.9000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"149","resultStr":"{\"title\":\"Estimation of Dynamic Term Structure Models\",\"authors\":\"G. Duffee, Richard Stanton\",\"doi\":\"10.1142/S2010139212500085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the finite-sample properties of some of the standard techniques used to estimate modern term structure models. For sample sizes and models similar to those used in most empirical work, we reach three surprising conclusions. First, while maximum likelihood works well for simple models, it produces strongly biased parameter estimates when the model includes a flexible specification of the dynamics of interest rate risk. Second, despite having the same asymptotic efficiency as maximum likelihood, the small-sample performance of Efficient Method of Moments (a commonly used method for estimating complicated models) is unacceptable even in the simplest term structure settings. Third, the linearized Kalman filter is a tractable and reasonably accurate estimation technique, which we recommend in settings where maximum likelihood is impractical.\",\"PeriodicalId\":45339,\"journal\":{\"name\":\"Quarterly Journal of Finance\",\"volume\":\"44 1\",\"pages\":\"1-51\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"149\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Finance\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010139212500085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Finance","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1142/S2010139212500085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
We study the finite-sample properties of some of the standard techniques used to estimate modern term structure models. For sample sizes and models similar to those used in most empirical work, we reach three surprising conclusions. First, while maximum likelihood works well for simple models, it produces strongly biased parameter estimates when the model includes a flexible specification of the dynamics of interest rate risk. Second, despite having the same asymptotic efficiency as maximum likelihood, the small-sample performance of Efficient Method of Moments (a commonly used method for estimating complicated models) is unacceptable even in the simplest term structure settings. Third, the linearized Kalman filter is a tractable and reasonably accurate estimation technique, which we recommend in settings where maximum likelihood is impractical.
期刊介绍:
The Quarterly Journal of Finance publishes high-quality papers in all areas of finance, including corporate finance, asset pricing, financial econometrics, international finance, macro-finance, behavioral finance, banking and financial intermediation, capital markets, risk management and insurance, derivatives, quantitative finance, corporate governance and compensation, investments and entrepreneurial finance.