{"title":"用离散小波变换(DWT)处理方法保证薄壁镍管涡流(EC)检测的质量","authors":"A. V, S. Thirunavukkarasu, Anish Kumar","doi":"10.1080/09349847.2020.1868639","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the discrete wavelet transform (DWT)-based signal processing methodology is applied for eliminating noise due to permeability variations in saturation eddy current (EC) testing signals from nickel tubes. The nickel tubes are of 0.3 mm thickness and 6.6 mm outer diameter. Systematic studies have been carried out to optimize the wavelet functions, number of decomposition levels, and thresholding algorithm for DWT processing based on the signal-to-noise ratio (SNR). The DWT processing has enabled reliable detection of a 0.1 mm deep notch located on the inner surface of the tubes meeting its stringent quality requirements. Application of signal processing-based methodology has resulted in an improvement in SNR of 11.4 dB as against 5.1 dB for the raw signals.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"94 1","pages":"24 - 37"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality Assurance of Thin-Walled Nickel Tubes by Eddy Current (EC) Testing Using the Discrete Wavelet Transform (DWT) Processing Methodology\",\"authors\":\"A. V, S. Thirunavukkarasu, Anish Kumar\",\"doi\":\"10.1080/09349847.2020.1868639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, the discrete wavelet transform (DWT)-based signal processing methodology is applied for eliminating noise due to permeability variations in saturation eddy current (EC) testing signals from nickel tubes. The nickel tubes are of 0.3 mm thickness and 6.6 mm outer diameter. Systematic studies have been carried out to optimize the wavelet functions, number of decomposition levels, and thresholding algorithm for DWT processing based on the signal-to-noise ratio (SNR). The DWT processing has enabled reliable detection of a 0.1 mm deep notch located on the inner surface of the tubes meeting its stringent quality requirements. Application of signal processing-based methodology has resulted in an improvement in SNR of 11.4 dB as against 5.1 dB for the raw signals.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"94 1\",\"pages\":\"24 - 37\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2020.1868639\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2020.1868639","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Quality Assurance of Thin-Walled Nickel Tubes by Eddy Current (EC) Testing Using the Discrete Wavelet Transform (DWT) Processing Methodology
ABSTRACT In this study, the discrete wavelet transform (DWT)-based signal processing methodology is applied for eliminating noise due to permeability variations in saturation eddy current (EC) testing signals from nickel tubes. The nickel tubes are of 0.3 mm thickness and 6.6 mm outer diameter. Systematic studies have been carried out to optimize the wavelet functions, number of decomposition levels, and thresholding algorithm for DWT processing based on the signal-to-noise ratio (SNR). The DWT processing has enabled reliable detection of a 0.1 mm deep notch located on the inner surface of the tubes meeting its stringent quality requirements. Application of signal processing-based methodology has resulted in an improvement in SNR of 11.4 dB as against 5.1 dB for the raw signals.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.