用离散小波变换(DWT)处理方法保证薄壁镍管涡流(EC)检测的质量

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Research in Nondestructive Evaluation Pub Date : 2021-01-02 DOI:10.1080/09349847.2020.1868639
A. V, S. Thirunavukkarasu, Anish Kumar
{"title":"用离散小波变换(DWT)处理方法保证薄壁镍管涡流(EC)检测的质量","authors":"A. V, S. Thirunavukkarasu, Anish Kumar","doi":"10.1080/09349847.2020.1868639","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the discrete wavelet transform (DWT)-based signal processing methodology is applied for eliminating noise due to permeability variations in saturation eddy current (EC) testing signals from nickel tubes. The nickel tubes are of 0.3 mm thickness and 6.6 mm outer diameter. Systematic studies have been carried out to optimize the wavelet functions, number of decomposition levels, and thresholding algorithm for DWT processing based on the signal-to-noise ratio (SNR). The DWT processing has enabled reliable detection of a 0.1 mm deep notch located on the inner surface of the tubes meeting its stringent quality requirements. Application of signal processing-based methodology has resulted in an improvement in SNR of 11.4 dB as against 5.1 dB for the raw signals.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"94 1","pages":"24 - 37"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality Assurance of Thin-Walled Nickel Tubes by Eddy Current (EC) Testing Using the Discrete Wavelet Transform (DWT) Processing Methodology\",\"authors\":\"A. V, S. Thirunavukkarasu, Anish Kumar\",\"doi\":\"10.1080/09349847.2020.1868639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, the discrete wavelet transform (DWT)-based signal processing methodology is applied for eliminating noise due to permeability variations in saturation eddy current (EC) testing signals from nickel tubes. The nickel tubes are of 0.3 mm thickness and 6.6 mm outer diameter. Systematic studies have been carried out to optimize the wavelet functions, number of decomposition levels, and thresholding algorithm for DWT processing based on the signal-to-noise ratio (SNR). The DWT processing has enabled reliable detection of a 0.1 mm deep notch located on the inner surface of the tubes meeting its stringent quality requirements. Application of signal processing-based methodology has resulted in an improvement in SNR of 11.4 dB as against 5.1 dB for the raw signals.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"94 1\",\"pages\":\"24 - 37\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2020.1868639\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2020.1868639","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究采用基于离散小波变换(DWT)的信号处理方法消除镍管饱和涡流(EC)测试信号中磁导率变化引起的噪声。镍管厚度为0.3 mm,外径为6.6 mm。对基于信噪比(SNR)的小波函数、分解层数和DWT处理阈值算法进行了系统的优化研究。DWT处理能够可靠地检测到位于管内表面的0.1 mm深的缺口,满足其严格的质量要求。基于信号处理方法的应用使原始信号的信噪比提高了11.4 dB,而原始信号的信噪比为5.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality Assurance of Thin-Walled Nickel Tubes by Eddy Current (EC) Testing Using the Discrete Wavelet Transform (DWT) Processing Methodology
ABSTRACT In this study, the discrete wavelet transform (DWT)-based signal processing methodology is applied for eliminating noise due to permeability variations in saturation eddy current (EC) testing signals from nickel tubes. The nickel tubes are of 0.3 mm thickness and 6.6 mm outer diameter. Systematic studies have been carried out to optimize the wavelet functions, number of decomposition levels, and thresholding algorithm for DWT processing based on the signal-to-noise ratio (SNR). The DWT processing has enabled reliable detection of a 0.1 mm deep notch located on the inner surface of the tubes meeting its stringent quality requirements. Application of signal processing-based methodology has resulted in an improvement in SNR of 11.4 dB as against 5.1 dB for the raw signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
期刊最新文献
Comparison of Skin Effects in Ferromagnetic and Nonferromagnetic Metals in Eddy Current Testing Bridging the Gap: Correlating Ultrasonically Quantified BVID with the Compressive Strength of CFRP Composites Nondestructive Evaluation and Residual Property Assessment of Impacted Nylon/carbon-Fiber Additively Manufactured FFF Components Using Four-Point Bend and Ultrasonic Testing A Novel Image-Based Long-Range Continuously Scanning Laser Doppler Vibrometer for Operational Modal Analysis of a Rotating Structure A Methodology for Structural Damage Detection Adding Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1