L. Nie, Junfeng Shen, Pengfei Zhou, Liu Zhengyu, Pang Yonghao, Wei Zhou, Andong Chen
{"title":"岩石探测的跨孔ERT配置评估:全尺寸物理模型测试","authors":"L. Nie, Junfeng Shen, Pengfei Zhou, Liu Zhengyu, Pang Yonghao, Wei Zhou, Andong Chen","doi":"10.32389/jeeg20-018","DOIUrl":null,"url":null,"abstract":"In Southeast China, the presence of boulders significantly threatens subway construction projects. Undetected boulders could negatively impact the efficiency and safety of subway construction methods that use shield and tunnel-boring machines. Therefore, boulder detection is a necessary step before construction begins. Recently, the cross-hole electrical resistivity tomography (ERT) method has gained attention as a potential boulder-detection approach in subway construction projects. However, in this method, the detection effect of each electrode configuration still needs to be assessed. In this study, a full-scale physical model test was conducted to determine the optimal electrode configuration for the cross-hole ERT method. Additionally, a sensitivity analysis of three types of electrode configurations, namely, bipole–bipole, dipole–dipole, and pole–tripole, was conducted. The results showed that the detection ability of the bipole–bipole electrode configuration was satisfactory, with very good boulder-detection resolution and sensitivity. Conversely, the resolution of the dipole–dipole electrode configuration, with relatively low signal strength, decreased as boulder distribution became more complex. Although the pole–tripole electrode configuration showed acceptable resolution, the boulder-detection results had many artifacts. Thus, the full-scale physical model test was conducted to thoroughly investigate the cross-hole ERT electrode configurations and determine the influence of boulder distribution on the measurements, with a view on achieving a more efficient application of this method in the field.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"20 1","pages":"569-579"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-hole ERT Configuration Assessment for Boulder Detection: A Full-scale Physical Model Test\",\"authors\":\"L. Nie, Junfeng Shen, Pengfei Zhou, Liu Zhengyu, Pang Yonghao, Wei Zhou, Andong Chen\",\"doi\":\"10.32389/jeeg20-018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Southeast China, the presence of boulders significantly threatens subway construction projects. Undetected boulders could negatively impact the efficiency and safety of subway construction methods that use shield and tunnel-boring machines. Therefore, boulder detection is a necessary step before construction begins. Recently, the cross-hole electrical resistivity tomography (ERT) method has gained attention as a potential boulder-detection approach in subway construction projects. However, in this method, the detection effect of each electrode configuration still needs to be assessed. In this study, a full-scale physical model test was conducted to determine the optimal electrode configuration for the cross-hole ERT method. Additionally, a sensitivity analysis of three types of electrode configurations, namely, bipole–bipole, dipole–dipole, and pole–tripole, was conducted. The results showed that the detection ability of the bipole–bipole electrode configuration was satisfactory, with very good boulder-detection resolution and sensitivity. Conversely, the resolution of the dipole–dipole electrode configuration, with relatively low signal strength, decreased as boulder distribution became more complex. Although the pole–tripole electrode configuration showed acceptable resolution, the boulder-detection results had many artifacts. Thus, the full-scale physical model test was conducted to thoroughly investigate the cross-hole ERT electrode configurations and determine the influence of boulder distribution on the measurements, with a view on achieving a more efficient application of this method in the field.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"20 1\",\"pages\":\"569-579\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg20-018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg20-018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Cross-hole ERT Configuration Assessment for Boulder Detection: A Full-scale Physical Model Test
In Southeast China, the presence of boulders significantly threatens subway construction projects. Undetected boulders could negatively impact the efficiency and safety of subway construction methods that use shield and tunnel-boring machines. Therefore, boulder detection is a necessary step before construction begins. Recently, the cross-hole electrical resistivity tomography (ERT) method has gained attention as a potential boulder-detection approach in subway construction projects. However, in this method, the detection effect of each electrode configuration still needs to be assessed. In this study, a full-scale physical model test was conducted to determine the optimal electrode configuration for the cross-hole ERT method. Additionally, a sensitivity analysis of three types of electrode configurations, namely, bipole–bipole, dipole–dipole, and pole–tripole, was conducted. The results showed that the detection ability of the bipole–bipole electrode configuration was satisfactory, with very good boulder-detection resolution and sensitivity. Conversely, the resolution of the dipole–dipole electrode configuration, with relatively low signal strength, decreased as boulder distribution became more complex. Although the pole–tripole electrode configuration showed acceptable resolution, the boulder-detection results had many artifacts. Thus, the full-scale physical model test was conducted to thoroughly investigate the cross-hole ERT electrode configurations and determine the influence of boulder distribution on the measurements, with a view on achieving a more efficient application of this method in the field.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.