有机光电子与光电的整齐层与多组分层中选定亚胺的热电性能研究进展

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Opto-Electronics Review Pub Date : 2023-04-01 DOI:10.24425/opelre.2021.139754
K. Bogdanowicz, A. Iwan
{"title":"有机光电子与光电的整齐层与多组分层中选定亚胺的热电性能研究进展","authors":"K. Bogdanowicz, A. Iwan","doi":"10.24425/opelre.2021.139754","DOIUrl":null,"url":null,"abstract":"The present review is mainly focused on the extended analysis of the results obtained from coupled measurement techniques of a thermal imaging camera and chronoamperometry for imines in undoped and doped states. This coupled technique allows to identify the current-voltage characteristics of thin films based on imine, as well as to assess layer defects in thermal images. Additional analysis of results provides further information regarding sample parameters, such as resistance, conductivity, thermal resistance, and Joule power heat correlated with increasing temperature. As can be concluded from this review, it is possible not only to study material properties at the supramolecular level, but also to tune macroscopic properties of  -conjugated systems. A detailed study of the structure-thermoelectrical properties in a series of eight unsymmetrical and symmetrical imines for the field of optoelectronics and photovoltaics has been undertaken. Apart from this molecular engineering, the imines properties were also tuned by supramolecular engineering via protonation with camphorsulfonic acid and by creation of bulk-heterojunction compositions based on poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) and/or [6,6]-phenyl-C71-butyric acid methyl ester, poly(3,4-ethylenedioxythiophene) towards the analysed donor or acceptor ability of imines in the active layer. The use of coupled measurement techniques of a thermal imaging camera and chronoamperometry allows obtaining comprehensive data on thermoelectric properties and defects indicating possible molecule rearrangement within the layer.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review on thermoelectrical properties of selected imines in neat and multicomponent layers towards organic opto-electronics and photovoltaics\",\"authors\":\"K. Bogdanowicz, A. Iwan\",\"doi\":\"10.24425/opelre.2021.139754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present review is mainly focused on the extended analysis of the results obtained from coupled measurement techniques of a thermal imaging camera and chronoamperometry for imines in undoped and doped states. This coupled technique allows to identify the current-voltage characteristics of thin films based on imine, as well as to assess layer defects in thermal images. Additional analysis of results provides further information regarding sample parameters, such as resistance, conductivity, thermal resistance, and Joule power heat correlated with increasing temperature. As can be concluded from this review, it is possible not only to study material properties at the supramolecular level, but also to tune macroscopic properties of  -conjugated systems. A detailed study of the structure-thermoelectrical properties in a series of eight unsymmetrical and symmetrical imines for the field of optoelectronics and photovoltaics has been undertaken. Apart from this molecular engineering, the imines properties were also tuned by supramolecular engineering via protonation with camphorsulfonic acid and by creation of bulk-heterojunction compositions based on poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) and/or [6,6]-phenyl-C71-butyric acid methyl ester, poly(3,4-ethylenedioxythiophene) towards the analysed donor or acceptor ability of imines in the active layer. The use of coupled measurement techniques of a thermal imaging camera and chronoamperometry allows obtaining comprehensive data on thermoelectric properties and defects indicating possible molecule rearrangement within the layer.\",\"PeriodicalId\":54670,\"journal\":{\"name\":\"Opto-Electronics Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronics Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/opelre.2021.139754\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/opelre.2021.139754","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

本文主要对热像仪和计时电流法对亚胺在未掺杂和掺杂状态下的耦合测量结果进行了扩展分析。这种耦合技术允许识别基于亚胺的薄膜的电流-电压特性,以及在热图像中评估层缺陷。对结果的进一步分析提供了有关样品参数的进一步信息,如电阻、电导率、热阻和焦耳功率热与温度升高相关。从本文的综述中可以得出结论,不仅可以在超分子水平上研究材料的性质,而且可以调整共轭体系的宏观性质。详细研究了光电子和光伏领域中8种不对称和对称亚胺的结构-热电性质。除了这种分子工程外,亚胺的性质还通过与樟脑磺酸质子化和建立基于聚(4,8-二[(2-乙基己基)氧]苯并[1,2-b:4,5-b ']二噻吩-2,6-二基-3-氟-2-[(2-乙基己基)羰基]噻吩[3,4-b]噻吩-4,6-二基)和/或[6,6]-苯基- c71 -丁酸甲酯的体异质结组合物进行了超分子工程调整。聚(3,4-乙烯二氧噻吩)对活性层中亚胺的供体或受体能力进行了分析。使用热成像相机和计时安培法的耦合测量技术可以获得关于热电特性和缺陷的全面数据,表明层内可能的分子重排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on thermoelectrical properties of selected imines in neat and multicomponent layers towards organic opto-electronics and photovoltaics
The present review is mainly focused on the extended analysis of the results obtained from coupled measurement techniques of a thermal imaging camera and chronoamperometry for imines in undoped and doped states. This coupled technique allows to identify the current-voltage characteristics of thin films based on imine, as well as to assess layer defects in thermal images. Additional analysis of results provides further information regarding sample parameters, such as resistance, conductivity, thermal resistance, and Joule power heat correlated with increasing temperature. As can be concluded from this review, it is possible not only to study material properties at the supramolecular level, but also to tune macroscopic properties of  -conjugated systems. A detailed study of the structure-thermoelectrical properties in a series of eight unsymmetrical and symmetrical imines for the field of optoelectronics and photovoltaics has been undertaken. Apart from this molecular engineering, the imines properties were also tuned by supramolecular engineering via protonation with camphorsulfonic acid and by creation of bulk-heterojunction compositions based on poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) and/or [6,6]-phenyl-C71-butyric acid methyl ester, poly(3,4-ethylenedioxythiophene) towards the analysed donor or acceptor ability of imines in the active layer. The use of coupled measurement techniques of a thermal imaging camera and chronoamperometry allows obtaining comprehensive data on thermoelectric properties and defects indicating possible molecule rearrangement within the layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opto-Electronics Review
Opto-Electronics Review 工程技术-工程:电子与电气
CiteScore
1.90
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged. It has been established for the publication of high quality original papers from the following fields: Optical Design and Applications, Image Processing Metamaterials, Optoelectronic Materials, Micro-Opto-Electro-Mechanical Systems, Infrared Physics and Technology, Modelling of Optoelectronic Devices, Semiconductor Lasers Technology and Fabrication of Optoelectronic Devices, Photonic Crystals, Laser Physics, Technology and Applications, Optical Sensors and Applications, Photovoltaics, Biomedical Optics and Photonics
期刊最新文献
Review: Metamaterial/metasurface applications in antenna domain Review: Metamaterial/metasurface applications in antenna domain 151693 150612 150610
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1