PerfDebug

Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, Miryung Kim
{"title":"PerfDebug","authors":"Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, Miryung Kim","doi":"10.1145/3357223.3362727","DOIUrl":null,"url":null,"abstract":"Performance is a key factor for big data applications, and much research has been devoted to optimizing these applications. While prior work can diagnose and correct data skew, the problem of computation skew---abnormally high computation costs for a small subset of input data---has been largely overlooked. Computation skew commonly occurs in real-world applications and yet no tool is available for developers to pinpoint underlying causes. To enable a user to debug applications that exhibit computation skew, we develop a post-mortem performance debugging tool. PerfDebug automatically finds input records responsible for such abnormalities in a big data application by reasoning about deviations in performance metrics such as job execution time, garbage collection time, and serialization time. The key to PerfDebug's success is a data provenance-based technique that computes and propagates record-level computation latency to keep track of abnormally expensive records throughout the pipeline. Finally, the input records that have the largest latency contributions are presented to the user for bug fixing. We evaluate PerfDebug via in-depth case studies and observe that remediation such as removing the single most expensive record or simple code rewrite can achieve up to 16X performance improvement.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PerfDebug\",\"authors\":\"Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, Miryung Kim\",\"doi\":\"10.1145/3357223.3362727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance is a key factor for big data applications, and much research has been devoted to optimizing these applications. While prior work can diagnose and correct data skew, the problem of computation skew---abnormally high computation costs for a small subset of input data---has been largely overlooked. Computation skew commonly occurs in real-world applications and yet no tool is available for developers to pinpoint underlying causes. To enable a user to debug applications that exhibit computation skew, we develop a post-mortem performance debugging tool. PerfDebug automatically finds input records responsible for such abnormalities in a big data application by reasoning about deviations in performance metrics such as job execution time, garbage collection time, and serialization time. The key to PerfDebug's success is a data provenance-based technique that computes and propagates record-level computation latency to keep track of abnormally expensive records throughout the pipeline. Finally, the input records that have the largest latency contributions are presented to the user for bug fixing. We evaluate PerfDebug via in-depth case studies and observe that remediation such as removing the single most expensive record or simple code rewrite can achieve up to 16X performance improvement.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PerfDebug
Performance is a key factor for big data applications, and much research has been devoted to optimizing these applications. While prior work can diagnose and correct data skew, the problem of computation skew---abnormally high computation costs for a small subset of input data---has been largely overlooked. Computation skew commonly occurs in real-world applications and yet no tool is available for developers to pinpoint underlying causes. To enable a user to debug applications that exhibit computation skew, we develop a post-mortem performance debugging tool. PerfDebug automatically finds input records responsible for such abnormalities in a big data application by reasoning about deviations in performance metrics such as job execution time, garbage collection time, and serialization time. The key to PerfDebug's success is a data provenance-based technique that computes and propagates record-level computation latency to keep track of abnormally expensive records throughout the pipeline. Finally, the input records that have the largest latency contributions are presented to the user for bug fixing. We evaluate PerfDebug via in-depth case studies and observe that remediation such as removing the single most expensive record or simple code rewrite can achieve up to 16X performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OneEdge Towards Reliable AI for Source Code Understanding Chronus Open Research Problems in the Cloud Building Reliable Cloud Services Using Coyote Actors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1