{"title":"深度融合黑色,透明,反射和无纹理的对象","authors":"Chun-Yu Chai, Yu-Po Wu, Shiao-Li Tsao","doi":"10.1109/ICRA40945.2020.9196894","DOIUrl":null,"url":null,"abstract":"Structured-light and stereo cameras, which are widely used to construct point clouds for robotic applications, have different limitations on estimating depth values. Structured-light cameras fail in black, transparent, and reflective objects, which influence the light path; stereo cameras fail in texture-less objects. In this work, we propose a depth fusion model that complements these two types of methods to generate high-quality point clouds for short-range robotic applications. The model first determines the fusion weights from the two input depth images and then refines the fused depth using color features. We construct a dataset containing the aforementioned challenging objects and report the performance of our proposed model. The results reveal that our method reduces the average L1 distance on depth prediction by 75% and 52% compared with the original depth output of the structured-light camera and the stereo model, respectively. A noticeable improvement on the Iterative Closest Point (ICP) algorithm can be achieved by using the refined depth images output from our method.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"2 1","pages":"6766-6772"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Depth Fusion for Black, Transparent, Reflective and Texture-Less Objects\",\"authors\":\"Chun-Yu Chai, Yu-Po Wu, Shiao-Li Tsao\",\"doi\":\"10.1109/ICRA40945.2020.9196894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured-light and stereo cameras, which are widely used to construct point clouds for robotic applications, have different limitations on estimating depth values. Structured-light cameras fail in black, transparent, and reflective objects, which influence the light path; stereo cameras fail in texture-less objects. In this work, we propose a depth fusion model that complements these two types of methods to generate high-quality point clouds for short-range robotic applications. The model first determines the fusion weights from the two input depth images and then refines the fused depth using color features. We construct a dataset containing the aforementioned challenging objects and report the performance of our proposed model. The results reveal that our method reduces the average L1 distance on depth prediction by 75% and 52% compared with the original depth output of the structured-light camera and the stereo model, respectively. A noticeable improvement on the Iterative Closest Point (ICP) algorithm can be achieved by using the refined depth images output from our method.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"2 1\",\"pages\":\"6766-6772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Depth Fusion for Black, Transparent, Reflective and Texture-Less Objects
Structured-light and stereo cameras, which are widely used to construct point clouds for robotic applications, have different limitations on estimating depth values. Structured-light cameras fail in black, transparent, and reflective objects, which influence the light path; stereo cameras fail in texture-less objects. In this work, we propose a depth fusion model that complements these two types of methods to generate high-quality point clouds for short-range robotic applications. The model first determines the fusion weights from the two input depth images and then refines the fused depth using color features. We construct a dataset containing the aforementioned challenging objects and report the performance of our proposed model. The results reveal that our method reduces the average L1 distance on depth prediction by 75% and 52% compared with the original depth output of the structured-light camera and the stereo model, respectively. A noticeable improvement on the Iterative Closest Point (ICP) algorithm can be achieved by using the refined depth images output from our method.