基于超像素的不同空间高光谱图像光谱分类

Sinem Aybüke Şakaci, S. Ertürk
{"title":"基于超像素的不同空间高光谱图像光谱分类","authors":"Sinem Aybüke Şakaci, S. Ertürk","doi":"10.1109/ICEEE2.2018.8391367","DOIUrl":null,"url":null,"abstract":"In this paper, superpixel based spectral classification of hyperspectral images are compared using different spaces. In conventional pixel-wise HSI classification systems only use spectral information. Unlike conventional pixel-wised HSI classification, superpixel based HSI classification consider both spectral and spatial information of HSI. Support vector machine (SVM) is used as the classification method. Simple Linear Iterative Clustering (SLIC) superpixel algorithm is used to segment hyperspectral dataset into superpixels. Classification performance of hyperspectral data is compared in RGB space, LAB space, PCA space, Spectral space, and SVM. The classification performances of the methods used are tested for two different sets of data and the classification performance results are compared. It is shown that superpixel based spectral classification in PCA space and LAB space gives better classification accuracy.","PeriodicalId":6482,"journal":{"name":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","volume":"44 1","pages":"384-388"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superpixel based spectral classification of hyperspectral images in different spaces\",\"authors\":\"Sinem Aybüke Şakaci, S. Ertürk\",\"doi\":\"10.1109/ICEEE2.2018.8391367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, superpixel based spectral classification of hyperspectral images are compared using different spaces. In conventional pixel-wise HSI classification systems only use spectral information. Unlike conventional pixel-wised HSI classification, superpixel based HSI classification consider both spectral and spatial information of HSI. Support vector machine (SVM) is used as the classification method. Simple Linear Iterative Clustering (SLIC) superpixel algorithm is used to segment hyperspectral dataset into superpixels. Classification performance of hyperspectral data is compared in RGB space, LAB space, PCA space, Spectral space, and SVM. The classification performances of the methods used are tested for two different sets of data and the classification performance results are compared. It is shown that superpixel based spectral classification in PCA space and LAB space gives better classification accuracy.\",\"PeriodicalId\":6482,\"journal\":{\"name\":\"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)\",\"volume\":\"44 1\",\"pages\":\"384-388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE2.2018.8391367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2.2018.8391367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对不同空间下基于超像素的高光谱图像光谱分类进行了比较。在传统的逐像素HSI分类系统中,只使用光谱信息。与传统的基于像素的HSI分类不同,基于超像素的HSI分类同时考虑了HSI的光谱和空间信息。使用支持向量机(SVM)作为分类方法。采用简单线性迭代聚类(SLIC)超像素算法对高光谱数据集进行超像素分割。比较了RGB空间、LAB空间、PCA空间、光谱空间和SVM对高光谱数据的分类性能。在两组不同的数据集上测试了所用方法的分类性能,并对分类性能结果进行了比较。结果表明,在PCA空间和LAB空间中基于超像素的光谱分类具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superpixel based spectral classification of hyperspectral images in different spaces
In this paper, superpixel based spectral classification of hyperspectral images are compared using different spaces. In conventional pixel-wise HSI classification systems only use spectral information. Unlike conventional pixel-wised HSI classification, superpixel based HSI classification consider both spectral and spatial information of HSI. Support vector machine (SVM) is used as the classification method. Simple Linear Iterative Clustering (SLIC) superpixel algorithm is used to segment hyperspectral dataset into superpixels. Classification performance of hyperspectral data is compared in RGB space, LAB space, PCA space, Spectral space, and SVM. The classification performances of the methods used are tested for two different sets of data and the classification performance results are compared. It is shown that superpixel based spectral classification in PCA space and LAB space gives better classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protection coordination assessment and improvement of electrical network of an industrial complex in connection to power grid: An experience report Grasshopper optimization algorithm for automatic voltage regulator system Parameter optimization of power system stabilizer via Salp Swarm algorithm Optimization of out-of-band impedance environment for linearity improvements of microwave power transistors Distribution network fault section identification and fault location using artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1