{"title":"在原花青素处理的树脂-牙本质界面上评估胶原蛋白和微渗透性。","authors":"B. Aydın, L. Hassan, G. Viana, A. Bedran-Russo","doi":"10.3290/j.jad.a37359","DOIUrl":null,"url":null,"abstract":"PURPOSE To establish a fluorescence-based method to simultaneously assess micro-permeability and collagen cross-linking induced by chemical agents at the resin-dentin interface. MATERIALS AND METHODS Three chemical agents were investigated (proanthocyanidin-rich grape seed extract: GSE; carbodiimide hydrochloride/N-hydroxysuccinimide: EDC/NHS; glutaraldehyde: GD) along with a control (distilled water) as primers applied on flat occlusal dentin surfaces of 48 teeth and restored with two commercially available etch-and-rinse adhesives. Resin-dentin interfaces were polished and infiltrated with rhodamine-B solution for confocal laser scanning microscopy analysis. Parameters were chosen that would allow acquisition of a simultaneous appearance of collagen and interfacial micro-permeability (rhodamine-B). Fluorescence emission intensity (FEI) was converted into numerals and values were calculated for each group. Data were statistically analyzed using one-way ANOVA and post-hoc Scheffe's and multiple comparisons tests (α = 0.05). T-tests with Pearson correlations were used to investigate correlations between collagen cross-linking and micro-permeability. RESULTS The FEI of collagen was the highest for GD, followed by GSE, with no significant differences between EDC/ NHS and the control group (p > 0.05). Micro-permeability was significantly affected by the adhesives (p < 0.05). Micro- permeability was the lowest for GSE groups, regardless of the adhesives (p < 0.001). Weak correlations were found between micro-permeability and collagen auto-fluorescence. CONCLUSIONS Non-enzymatic collagen cross-linking induced by GSE and GD can be detected by increased collagen auto-fluorescence, and results in reduced interfacial micro-permeability. Increased collagen auto-fluorescence was correlated with fluorescent collagen cross-links and decreased micro-permeability at the resin-dentin interface. Collagen auto-fluorescence is a useful tool to detect auto-fluorescent exogenous cross links and their potential impact on the quality of the resin-dentin interface.","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"20 1","pages":"529-534"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Assessing Collagen and Micro-permeability at the Proanthocyanidin-treated Resin-Dentin Interface.\",\"authors\":\"B. Aydın, L. Hassan, G. Viana, A. Bedran-Russo\",\"doi\":\"10.3290/j.jad.a37359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE To establish a fluorescence-based method to simultaneously assess micro-permeability and collagen cross-linking induced by chemical agents at the resin-dentin interface. MATERIALS AND METHODS Three chemical agents were investigated (proanthocyanidin-rich grape seed extract: GSE; carbodiimide hydrochloride/N-hydroxysuccinimide: EDC/NHS; glutaraldehyde: GD) along with a control (distilled water) as primers applied on flat occlusal dentin surfaces of 48 teeth and restored with two commercially available etch-and-rinse adhesives. Resin-dentin interfaces were polished and infiltrated with rhodamine-B solution for confocal laser scanning microscopy analysis. Parameters were chosen that would allow acquisition of a simultaneous appearance of collagen and interfacial micro-permeability (rhodamine-B). Fluorescence emission intensity (FEI) was converted into numerals and values were calculated for each group. Data were statistically analyzed using one-way ANOVA and post-hoc Scheffe's and multiple comparisons tests (α = 0.05). T-tests with Pearson correlations were used to investigate correlations between collagen cross-linking and micro-permeability. RESULTS The FEI of collagen was the highest for GD, followed by GSE, with no significant differences between EDC/ NHS and the control group (p > 0.05). Micro-permeability was significantly affected by the adhesives (p < 0.05). Micro- permeability was the lowest for GSE groups, regardless of the adhesives (p < 0.001). Weak correlations were found between micro-permeability and collagen auto-fluorescence. CONCLUSIONS Non-enzymatic collagen cross-linking induced by GSE and GD can be detected by increased collagen auto-fluorescence, and results in reduced interfacial micro-permeability. Increased collagen auto-fluorescence was correlated with fluorescent collagen cross-links and decreased micro-permeability at the resin-dentin interface. Collagen auto-fluorescence is a useful tool to detect auto-fluorescent exogenous cross links and their potential impact on the quality of the resin-dentin interface.\",\"PeriodicalId\":94234,\"journal\":{\"name\":\"The journal of adhesive dentistry\",\"volume\":\"20 1\",\"pages\":\"529-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of adhesive dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.a37359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.a37359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing Collagen and Micro-permeability at the Proanthocyanidin-treated Resin-Dentin Interface.
PURPOSE To establish a fluorescence-based method to simultaneously assess micro-permeability and collagen cross-linking induced by chemical agents at the resin-dentin interface. MATERIALS AND METHODS Three chemical agents were investigated (proanthocyanidin-rich grape seed extract: GSE; carbodiimide hydrochloride/N-hydroxysuccinimide: EDC/NHS; glutaraldehyde: GD) along with a control (distilled water) as primers applied on flat occlusal dentin surfaces of 48 teeth and restored with two commercially available etch-and-rinse adhesives. Resin-dentin interfaces were polished and infiltrated with rhodamine-B solution for confocal laser scanning microscopy analysis. Parameters were chosen that would allow acquisition of a simultaneous appearance of collagen and interfacial micro-permeability (rhodamine-B). Fluorescence emission intensity (FEI) was converted into numerals and values were calculated for each group. Data were statistically analyzed using one-way ANOVA and post-hoc Scheffe's and multiple comparisons tests (α = 0.05). T-tests with Pearson correlations were used to investigate correlations between collagen cross-linking and micro-permeability. RESULTS The FEI of collagen was the highest for GD, followed by GSE, with no significant differences between EDC/ NHS and the control group (p > 0.05). Micro-permeability was significantly affected by the adhesives (p < 0.05). Micro- permeability was the lowest for GSE groups, regardless of the adhesives (p < 0.001). Weak correlations were found between micro-permeability and collagen auto-fluorescence. CONCLUSIONS Non-enzymatic collagen cross-linking induced by GSE and GD can be detected by increased collagen auto-fluorescence, and results in reduced interfacial micro-permeability. Increased collagen auto-fluorescence was correlated with fluorescent collagen cross-links and decreased micro-permeability at the resin-dentin interface. Collagen auto-fluorescence is a useful tool to detect auto-fluorescent exogenous cross links and their potential impact on the quality of the resin-dentin interface.