Guihua Deng, M. Zhong, Mo Lei, J. Hunt, Wanle Wang, Yong Zhou
{"title":"基于大数据的长江经济带内河运输货运分布分析与建模","authors":"Guihua Deng, M. Zhong, Mo Lei, J. Hunt, Wanle Wang, Yong Zhou","doi":"10.1680/jtran.21.00032","DOIUrl":null,"url":null,"abstract":"The Yangtze River Economic Belt (YREB) serves as the main east-west axis of China to promote economic development and environmental protection along the Yangtze River. This paper analyses the factors that affect the freight distribution of major types of cargo transported through the Yangtze River, using data from the automatic identification system (AIS) and ship visa data. First, a set of freight impedance functions are developed for different types of links of the waterway network, by considering a number of factors such as cargo types, delays at ship locks, water levels and flows at different waterway segments and upstream and downstream shipping speeds. Both the distance- and time-based impedance matrices of different types of cargo are computed, respectively. After that, gravity model (GM) and intervening opportunity model (IOM) are estimated to simulate the distribution of different types of cargo based on the computed impedance matrices. Meanwhile, a trip length distribution (TLD) method is applied to validate the estimated distribution models. The results indicate that GM with a power term outperforms other models, and the time-based models are superior to the distance-based ones for the prediction of freight distributions over large geographies like the YREB. This work offers an in-depth understanding of the freight characteristics of inland waterways and therefore it should be helpful for relevant authorities in formulating their port and inland waterway plans and policies.","PeriodicalId":49670,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Transport","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freight Distribution Analysis and Modelling of Inland Waterway Transport along the Yangtze River Economic Belt using Big Data\",\"authors\":\"Guihua Deng, M. Zhong, Mo Lei, J. Hunt, Wanle Wang, Yong Zhou\",\"doi\":\"10.1680/jtran.21.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Yangtze River Economic Belt (YREB) serves as the main east-west axis of China to promote economic development and environmental protection along the Yangtze River. This paper analyses the factors that affect the freight distribution of major types of cargo transported through the Yangtze River, using data from the automatic identification system (AIS) and ship visa data. First, a set of freight impedance functions are developed for different types of links of the waterway network, by considering a number of factors such as cargo types, delays at ship locks, water levels and flows at different waterway segments and upstream and downstream shipping speeds. Both the distance- and time-based impedance matrices of different types of cargo are computed, respectively. After that, gravity model (GM) and intervening opportunity model (IOM) are estimated to simulate the distribution of different types of cargo based on the computed impedance matrices. Meanwhile, a trip length distribution (TLD) method is applied to validate the estimated distribution models. The results indicate that GM with a power term outperforms other models, and the time-based models are superior to the distance-based ones for the prediction of freight distributions over large geographies like the YREB. This work offers an in-depth understanding of the freight characteristics of inland waterways and therefore it should be helpful for relevant authorities in formulating their port and inland waterway plans and policies.\",\"PeriodicalId\":49670,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Transport\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jtran.21.00032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jtran.21.00032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Freight Distribution Analysis and Modelling of Inland Waterway Transport along the Yangtze River Economic Belt using Big Data
The Yangtze River Economic Belt (YREB) serves as the main east-west axis of China to promote economic development and environmental protection along the Yangtze River. This paper analyses the factors that affect the freight distribution of major types of cargo transported through the Yangtze River, using data from the automatic identification system (AIS) and ship visa data. First, a set of freight impedance functions are developed for different types of links of the waterway network, by considering a number of factors such as cargo types, delays at ship locks, water levels and flows at different waterway segments and upstream and downstream shipping speeds. Both the distance- and time-based impedance matrices of different types of cargo are computed, respectively. After that, gravity model (GM) and intervening opportunity model (IOM) are estimated to simulate the distribution of different types of cargo based on the computed impedance matrices. Meanwhile, a trip length distribution (TLD) method is applied to validate the estimated distribution models. The results indicate that GM with a power term outperforms other models, and the time-based models are superior to the distance-based ones for the prediction of freight distributions over large geographies like the YREB. This work offers an in-depth understanding of the freight characteristics of inland waterways and therefore it should be helpful for relevant authorities in formulating their port and inland waterway plans and policies.
期刊介绍:
Transport is essential reading for those needing information on civil engineering developments across all areas of transport. This journal covers all aspects of planning, design, construction, maintenance and project management for the movement of goods and people.
Specific topics covered include: transport planning and policy, construction of infrastructure projects, traffic management, airports and highway pavement maintenance and performance and the economic and environmental aspects of urban and inter-urban transportation systems.