自底向上进化子空间聚类

Ali Vahdat, M. Heywood, A. N. Zincir-Heywood
{"title":"自底向上进化子空间聚类","authors":"Ali Vahdat, M. Heywood, A. N. Zincir-Heywood","doi":"10.1109/CEC.2010.5585962","DOIUrl":null,"url":null,"abstract":"The ultimate goal of subspace clustering algorithms is to identify both the subset of attributes supporting a cluster and the location of the cluster in the subspace. In this work a generic evolutionary approach to bottom-up subspace clustering is proposed consisting of three steps. The first applies a non-evolutionary clustering algorithm attribute-wise to establish the lattice from which subspace clusters will be designed. In the second step a multi-objective Genetic Algorithm (MOGA) is used to evolve good candidate subspace clusters (CSC) through a combinatorial search w.r.t. the attribute-wise lattice from step 1. The third step then searches in the space of CSC from the population of the the first MOGA to find the best combination of subspace clusters, again under a MOGA formulation. Important properties of the approach are that a standard clustering algorithm is deployed in step one to build the initial lattice of attribute-wise clusters. This helps to decouple the computational expense of clustering using Evolutionary Computation, with the MOGA applied in steps 2 and 3 building clusters through a combinatorial search relative to the original lattice parameters. Benchmarking on data sets with tens to hundreds of attributes illustrates the feasibility of the approach.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"31 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Bottom-up evolutionary subspace clustering\",\"authors\":\"Ali Vahdat, M. Heywood, A. N. Zincir-Heywood\",\"doi\":\"10.1109/CEC.2010.5585962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultimate goal of subspace clustering algorithms is to identify both the subset of attributes supporting a cluster and the location of the cluster in the subspace. In this work a generic evolutionary approach to bottom-up subspace clustering is proposed consisting of three steps. The first applies a non-evolutionary clustering algorithm attribute-wise to establish the lattice from which subspace clusters will be designed. In the second step a multi-objective Genetic Algorithm (MOGA) is used to evolve good candidate subspace clusters (CSC) through a combinatorial search w.r.t. the attribute-wise lattice from step 1. The third step then searches in the space of CSC from the population of the the first MOGA to find the best combination of subspace clusters, again under a MOGA formulation. Important properties of the approach are that a standard clustering algorithm is deployed in step one to build the initial lattice of attribute-wise clusters. This helps to decouple the computational expense of clustering using Evolutionary Computation, with the MOGA applied in steps 2 and 3 building clusters through a combinatorial search relative to the original lattice parameters. Benchmarking on data sets with tens to hundreds of attributes illustrates the feasibility of the approach.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"31 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5585962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5585962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

子空间聚类算法的最终目标是识别支持聚类的属性子集和聚类在子空间中的位置。本文提出了一种由三个步骤组成的自底向上子空间聚类的通用进化方法。第一种方法采用非进化聚类算法,根据属性建立格,并据此设计子空间聚类。第二步,利用多目标遗传算法(MOGA)结合第一步的属性格进行组合搜索,进化出候选子空间聚类(CSC)。第三步,从第一个MOGA的种群中搜索CSC空间,找到子空间簇的最佳组合,同样在MOGA公式下。该方法的重要特性是,在第一步中部署了一个标准聚类算法来构建属性集群的初始晶格。这有助于解耦使用进化计算聚类的计算费用,在步骤2和步骤3中应用MOGA,通过相对于原始晶格参数的组合搜索构建聚类。对具有数十到数百个属性的数据集进行基准测试说明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bottom-up evolutionary subspace clustering
The ultimate goal of subspace clustering algorithms is to identify both the subset of attributes supporting a cluster and the location of the cluster in the subspace. In this work a generic evolutionary approach to bottom-up subspace clustering is proposed consisting of three steps. The first applies a non-evolutionary clustering algorithm attribute-wise to establish the lattice from which subspace clusters will be designed. In the second step a multi-objective Genetic Algorithm (MOGA) is used to evolve good candidate subspace clusters (CSC) through a combinatorial search w.r.t. the attribute-wise lattice from step 1. The third step then searches in the space of CSC from the population of the the first MOGA to find the best combination of subspace clusters, again under a MOGA formulation. Important properties of the approach are that a standard clustering algorithm is deployed in step one to build the initial lattice of attribute-wise clusters. This helps to decouple the computational expense of clustering using Evolutionary Computation, with the MOGA applied in steps 2 and 3 building clusters through a combinatorial search relative to the original lattice parameters. Benchmarking on data sets with tens to hundreds of attributes illustrates the feasibility of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1