幼稚智能体空间维度感知的非线性方法

Alban Laflaquière, S. Argentieri, Olivia Breysse, Stéphane Genet, B. Gas
{"title":"幼稚智能体空间维度感知的非线性方法","authors":"Alban Laflaquière, S. Argentieri, Olivia Breysse, Stéphane Genet, B. Gas","doi":"10.1109/IROS.2012.6385632","DOIUrl":null,"url":null,"abstract":"Developmental Robotics offers a new approach to numerous AI features that are often taken as granted. Traditionally, perception is supposed to be an inherent capacity of the agent. Moreover, it largely relies on models built by the system's designer. A new approach is to consider perception as an experimentally acquired ability that is learned exclusively through the analysis of the agent's sensorimotor flow. Previous works, based on H.Poincaré's intuitions and the sensorimotor contingencies theory, allow a simulated agent to extract the dimension of geometrical space in which it is immersed without any a priori knowledge. Those results are limited to infinitesimal movement's amplitude of the system. In this paper, a non-linear dimension estimation method is proposed to push back this limitation.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"135 1","pages":"3253-3259"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A non-linear approach to space dimension perception by a naive agent\",\"authors\":\"Alban Laflaquière, S. Argentieri, Olivia Breysse, Stéphane Genet, B. Gas\",\"doi\":\"10.1109/IROS.2012.6385632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developmental Robotics offers a new approach to numerous AI features that are often taken as granted. Traditionally, perception is supposed to be an inherent capacity of the agent. Moreover, it largely relies on models built by the system's designer. A new approach is to consider perception as an experimentally acquired ability that is learned exclusively through the analysis of the agent's sensorimotor flow. Previous works, based on H.Poincaré's intuitions and the sensorimotor contingencies theory, allow a simulated agent to extract the dimension of geometrical space in which it is immersed without any a priori knowledge. Those results are limited to infinitesimal movement's amplitude of the system. In this paper, a non-linear dimension estimation method is proposed to push back this limitation.\",\"PeriodicalId\":6358,\"journal\":{\"name\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"135 1\",\"pages\":\"3253-3259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2012.6385632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

发展机器人为许多人工智能功能提供了一种新方法,这些功能通常被认为是理所当然的。传统上,感知被认为是agent的一种固有能力。此外,它在很大程度上依赖于系统设计者建立的模型。一种新的方法是认为知觉是一种实验获得的能力,只能通过分析主体的感觉运动流来学习。先前的工作,基于h . poincarcarve的直觉和感觉运动偶然性理论,允许模拟主体在没有任何先验知识的情况下提取其所沉浸的几何空间的维度。这些结果仅限于系统的无穷小运动幅度。本文提出了一种非线性维数估计方法来克服这一限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A non-linear approach to space dimension perception by a naive agent
Developmental Robotics offers a new approach to numerous AI features that are often taken as granted. Traditionally, perception is supposed to be an inherent capacity of the agent. Moreover, it largely relies on models built by the system's designer. A new approach is to consider perception as an experimentally acquired ability that is learned exclusively through the analysis of the agent's sensorimotor flow. Previous works, based on H.Poincaré's intuitions and the sensorimotor contingencies theory, allow a simulated agent to extract the dimension of geometrical space in which it is immersed without any a priori knowledge. Those results are limited to infinitesimal movement's amplitude of the system. In this paper, a non-linear dimension estimation method is proposed to push back this limitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YES - YEt another object segmentation: Exploiting camera movement Scan registration with multi-scale k-means normal distributions transform Visual servoing using the sum of conditional variance Parallel sampling-based motion planning with superlinear speedup Tactile sensor based varying contact point manipulation strategy for dexterous robot hand manipulating unknown objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1