让出处为你工作

R J. Pub Date : 2023-02-10 DOI:10.32614/rj-2023-003
Barbara Lerner, E. Boose, O. Brand, Aaron M. Ellison, E. Fong, Matthew K. Lau, K. Ngo, Thomas Pasquier, Luis A. Perez, M. Seltzer, Rose Sheehan, J. Wonsil
{"title":"让出处为你工作","authors":"Barbara Lerner, E. Boose, O. Brand, Aaron M. Ellison, E. Fong, Matthew K. Lau, K. Ngo, Thomas Pasquier, Luis A. Perez, M. Seltzer, Rose Sheehan, J. Wonsil","doi":"10.32614/rj-2023-003","DOIUrl":null,"url":null,"abstract":"To be useful, scientific results must be reproducible and trustworthy. Data provenance—the history of data and how it was computed—underlies reproducibility of, and trust in, data analyses. Our work focuses on collecting data provenance from R scripts and providing tools that use the provenance to increase the reproducibility of and trust in analyses done in R. Specifically, our “End-to-end provenance tools” (“E2ETools”) use data provenance to: document the computing environment and inputs and outputs of a script’s execution; support script debugging and exploration; and explain differences in behavior across repeated executions of the same script. Use of these tools can help both the original author and later users of a script reproduce and trust its results.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"7 1","pages":"141-159"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Making Provenance Work for You\",\"authors\":\"Barbara Lerner, E. Boose, O. Brand, Aaron M. Ellison, E. Fong, Matthew K. Lau, K. Ngo, Thomas Pasquier, Luis A. Perez, M. Seltzer, Rose Sheehan, J. Wonsil\",\"doi\":\"10.32614/rj-2023-003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To be useful, scientific results must be reproducible and trustworthy. Data provenance—the history of data and how it was computed—underlies reproducibility of, and trust in, data analyses. Our work focuses on collecting data provenance from R scripts and providing tools that use the provenance to increase the reproducibility of and trust in analyses done in R. Specifically, our “End-to-end provenance tools” (“E2ETools”) use data provenance to: document the computing environment and inputs and outputs of a script’s execution; support script debugging and exploration; and explain differences in behavior across repeated executions of the same script. Use of these tools can help both the original author and later users of a script reproduce and trust its results.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"7 1\",\"pages\":\"141-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

要想有用,科学结果必须是可重复的和值得信赖的。数据来源——数据的历史和计算方式——是数据分析可重复性和可信度的基础。我们的工作重点是从R脚本中收集数据来源,并提供使用这些来源的工具来增加R中分析的可重复性和可信度。具体来说,我们的“端到端来源工具”(“E2ETools”)使用数据来源来记录计算环境和脚本执行的输入和输出;支持脚本调试和探索;并解释重复执行同一脚本时的行为差异。使用这些工具可以帮助脚本的原作者和后来的用户重现并信任其结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Making Provenance Work for You
To be useful, scientific results must be reproducible and trustworthy. Data provenance—the history of data and how it was computed—underlies reproducibility of, and trust in, data analyses. Our work focuses on collecting data provenance from R scripts and providing tools that use the provenance to increase the reproducibility of and trust in analyses done in R. Specifically, our “End-to-end provenance tools” (“E2ETools”) use data provenance to: document the computing environment and inputs and outputs of a script’s execution; support script debugging and exploration; and explain differences in behavior across repeated executions of the same script. Use of these tools can help both the original author and later users of a script reproduce and trust its results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1