基于网格约束分解的批处理昂贵多目标优化

Feng Zhang, Xinye Cai, Zhun Fan
{"title":"基于网格约束分解的批处理昂贵多目标优化","authors":"Feng Zhang, Xinye Cai, Zhun Fan","doi":"10.1109/SSCI44817.2019.9002765","DOIUrl":null,"url":null,"abstract":"A batched constrained decomposition with grids (BCDG) is proposed for expensive multiobjective optimization problems. In this algorithm, each objective function is approximated by a Gaussian process model and CDG-MOEA is used to optimize a candidate population. Finally, we use Hypervolume Indicator to select some better points from the candidate population for evaluation. In the process of CDG-MOEA optimizing candidate solutions and using Hypervolume Indicator to select candidate solutions for evaluation, we use Gaussian process lower confidence bound criteria to consider the uncertainty of Gaussian process prediction. Experimental study on some special test problems shows that BCDG can effectively solve some special expensive multiobjective optimization problems.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"2 1","pages":"2081-2087"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Batched Expensive Multiobjective Optimization Based on Constrained Decomposition with Grids\",\"authors\":\"Feng Zhang, Xinye Cai, Zhun Fan\",\"doi\":\"10.1109/SSCI44817.2019.9002765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A batched constrained decomposition with grids (BCDG) is proposed for expensive multiobjective optimization problems. In this algorithm, each objective function is approximated by a Gaussian process model and CDG-MOEA is used to optimize a candidate population. Finally, we use Hypervolume Indicator to select some better points from the candidate population for evaluation. In the process of CDG-MOEA optimizing candidate solutions and using Hypervolume Indicator to select candidate solutions for evaluation, we use Gaussian process lower confidence bound criteria to consider the uncertainty of Gaussian process prediction. Experimental study on some special test problems shows that BCDG can effectively solve some special expensive multiobjective optimization problems.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"2 1\",\"pages\":\"2081-2087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对昂贵的多目标优化问题,提出了一种带网格的批量约束分解方法。该算法采用高斯过程模型对目标函数进行近似,利用CDG-MOEA算法对候选种群进行优化。最后,我们使用Hypervolume Indicator从候选总体中选择一些较好的点进行评估。在CDG-MOEA优化候选解并利用Hypervolume Indicator选择候选解进行评价的过程中,我们采用高斯过程下置信度界准则来考虑高斯过程预测的不确定性。对一些特殊测试问题的实验研究表明,BCDG可以有效地解决一些特殊的昂贵的多目标优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Batched Expensive Multiobjective Optimization Based on Constrained Decomposition with Grids
A batched constrained decomposition with grids (BCDG) is proposed for expensive multiobjective optimization problems. In this algorithm, each objective function is approximated by a Gaussian process model and CDG-MOEA is used to optimize a candidate population. Finally, we use Hypervolume Indicator to select some better points from the candidate population for evaluation. In the process of CDG-MOEA optimizing candidate solutions and using Hypervolume Indicator to select candidate solutions for evaluation, we use Gaussian process lower confidence bound criteria to consider the uncertainty of Gaussian process prediction. Experimental study on some special test problems shows that BCDG can effectively solve some special expensive multiobjective optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1