{"title":"求解经济电力调度问题的差分进化算法","authors":"Pooja","doi":"10.3934/naco.2021042","DOIUrl":null,"url":null,"abstract":"In power systems, Economic Power dispatch Problem (EPP) is an influential optimization problem which is a highly non-convex and non-linear optimization problem. In the current study, a novel version of Differential Evolution (NDE) is used to solve this particular problem. NDE algorithm enhances local and global search capability along with efficient utilization of time and space by making use of two elite features: selfadaptive control parameter and single population structure. The combined effect of these concepts improves the performance of Differential Evolution (DE) without compromising on quality of the solution and balances the exploitation and exploration capabilities of DE. The efficiency of NDE is validated by evaluating on three benchmark cases of the power system problem having constraints such as power balance and power generation along with nonsmooth cost function and is compared with other optimization algorithms. The Numerical outcomes uncovered that NDE performed well for all the benchmark cases and maintained a trade-off between convergence rate and efficiency.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel differential evolution algorithm for economic power dispatch problem\",\"authors\":\"Pooja\",\"doi\":\"10.3934/naco.2021042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In power systems, Economic Power dispatch Problem (EPP) is an influential optimization problem which is a highly non-convex and non-linear optimization problem. In the current study, a novel version of Differential Evolution (NDE) is used to solve this particular problem. NDE algorithm enhances local and global search capability along with efficient utilization of time and space by making use of two elite features: selfadaptive control parameter and single population structure. The combined effect of these concepts improves the performance of Differential Evolution (DE) without compromising on quality of the solution and balances the exploitation and exploration capabilities of DE. The efficiency of NDE is validated by evaluating on three benchmark cases of the power system problem having constraints such as power balance and power generation along with nonsmooth cost function and is compared with other optimization algorithms. The Numerical outcomes uncovered that NDE performed well for all the benchmark cases and maintained a trade-off between convergence rate and efficiency.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel differential evolution algorithm for economic power dispatch problem
In power systems, Economic Power dispatch Problem (EPP) is an influential optimization problem which is a highly non-convex and non-linear optimization problem. In the current study, a novel version of Differential Evolution (NDE) is used to solve this particular problem. NDE algorithm enhances local and global search capability along with efficient utilization of time and space by making use of two elite features: selfadaptive control parameter and single population structure. The combined effect of these concepts improves the performance of Differential Evolution (DE) without compromising on quality of the solution and balances the exploitation and exploration capabilities of DE. The efficiency of NDE is validated by evaluating on three benchmark cases of the power system problem having constraints such as power balance and power generation along with nonsmooth cost function and is compared with other optimization algorithms. The Numerical outcomes uncovered that NDE performed well for all the benchmark cases and maintained a trade-off between convergence rate and efficiency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.