通过探索机械刺激评估骨折愈合疗法的血管化骨芯片模型的开发

In vitro models Pub Date : 2021-10-29 eCollection Date: 2022-02-01 DOI:10.1007/s44164-021-00004-7
Bodhisatwa Das, Sundeep V Seesala, Pallabi Pal, Trina Roy, Preetam Guha Roy, Santanu Dhara
{"title":"通过探索机械刺激评估骨折愈合疗法的血管化骨芯片模型的开发","authors":"Bodhisatwa Das, Sundeep V Seesala, Pallabi Pal, Trina Roy, Preetam Guha Roy, Santanu Dhara","doi":"10.1007/s44164-021-00004-7","DOIUrl":null,"url":null,"abstract":"<p><p>Bone is the major connective tissue maintaining the structural integrity of the human body. However, fracture and many skeletal degenerative diseases can compromise this function. Thus, therapeutics related to bone degeneration are of significant research interest and require good in vitro models for such therapeutic evaluation. Bone is a highly vascularized tissue and incorporation of this feature is significantly important for mimicking the osteogenic microenvironment. In the current study, we developed a vascularized flat bone model via simultaneous mechanical actuation of mechanical strain and fluid shear. The mechanical strain was achieved by static magnetic field actuation of a magnetic nanocomposite scaffold. The fluid shear was generated by developing a micropattern on the magnetic nanocomposite via replica molding and laser-based microfabrication. From the live cell imaging window of the microdevice, both bone and vasculature like cellular morphology was observed. The SEM study showed thick ECM deposition in the dynamic culture. In the PCR study, both osteogenic (Col-1, osteocalcin) and angiogenic phenotypes (PECAM) were observed in the dynamic culture scaffolds while chondrogenic marker (Col-2) was downregulated.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-021-00004-7.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"50 1","pages":"73-83"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749731/pdf/","citationCount":"0","resultStr":"{\"title\":\"A vascularized bone-on-a-chip model development via exploring mechanical stimulation for evaluation of fracture healing therapeutics.\",\"authors\":\"Bodhisatwa Das, Sundeep V Seesala, Pallabi Pal, Trina Roy, Preetam Guha Roy, Santanu Dhara\",\"doi\":\"10.1007/s44164-021-00004-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone is the major connective tissue maintaining the structural integrity of the human body. However, fracture and many skeletal degenerative diseases can compromise this function. Thus, therapeutics related to bone degeneration are of significant research interest and require good in vitro models for such therapeutic evaluation. Bone is a highly vascularized tissue and incorporation of this feature is significantly important for mimicking the osteogenic microenvironment. In the current study, we developed a vascularized flat bone model via simultaneous mechanical actuation of mechanical strain and fluid shear. The mechanical strain was achieved by static magnetic field actuation of a magnetic nanocomposite scaffold. The fluid shear was generated by developing a micropattern on the magnetic nanocomposite via replica molding and laser-based microfabrication. From the live cell imaging window of the microdevice, both bone and vasculature like cellular morphology was observed. The SEM study showed thick ECM deposition in the dynamic culture. In the PCR study, both osteogenic (Col-1, osteocalcin) and angiogenic phenotypes (PECAM) were observed in the dynamic culture scaffolds while chondrogenic marker (Col-2) was downregulated.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-021-00004-7.</p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"50 1\",\"pages\":\"73-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-021-00004-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-021-00004-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A vascularized bone-on-a-chip model development via exploring mechanical stimulation for evaluation of fracture healing therapeutics.

Bone is the major connective tissue maintaining the structural integrity of the human body. However, fracture and many skeletal degenerative diseases can compromise this function. Thus, therapeutics related to bone degeneration are of significant research interest and require good in vitro models for such therapeutic evaluation. Bone is a highly vascularized tissue and incorporation of this feature is significantly important for mimicking the osteogenic microenvironment. In the current study, we developed a vascularized flat bone model via simultaneous mechanical actuation of mechanical strain and fluid shear. The mechanical strain was achieved by static magnetic field actuation of a magnetic nanocomposite scaffold. The fluid shear was generated by developing a micropattern on the magnetic nanocomposite via replica molding and laser-based microfabrication. From the live cell imaging window of the microdevice, both bone and vasculature like cellular morphology was observed. The SEM study showed thick ECM deposition in the dynamic culture. In the PCR study, both osteogenic (Col-1, osteocalcin) and angiogenic phenotypes (PECAM) were observed in the dynamic culture scaffolds while chondrogenic marker (Col-2) was downregulated.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-021-00004-7.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1