液化作用下斜桩横向扩展的数值研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-05-06 DOI:10.3390/geotechnics3020019
Yu Wang, Rolando P Orense
{"title":"液化作用下斜桩横向扩展的数值研究","authors":"Yu Wang, Rolando P Orense","doi":"10.3390/geotechnics3020019","DOIUrl":null,"url":null,"abstract":"Inclined piles have been widely applied as one of the countermeasures against large lateral spreading induced by soil liquefaction during earthquakes. However, the unsatisfactory performance of inclined piles in past events has impeded their application in seismic areas. To elucidate the performance of inclined piles when subjected to lateral spreading induced by soil liquefaction, numerical analyzes were performed using the OpenSees framework. For this purpose, a comprehensive three-dimensional finite element model was developed. Interface elements were used between the soil and the pile to account for the friction and gapping mechanisms. A multi-yield-surface plasticity constitutive relationship for sand was adopted to simulate the soil liquefaction behavior. Based on the proposed numerical model, parametric analyzes were conducted to investigate the influence of various factors on the behavior of inclined piles, including the raked angle of the pile, the ground slope, the soil profile, and the amplitude of the input motion. The response of the system indicates that inclined piles can behave better than vertical piles in decreasing soil deformation and the cap response. The influences of the investigated factors are highlighted to adopt the appropriate pile inclination in laterally spreading ground and maximize the advantages of using inclined piles.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"214 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Inclined Piles under Liquefaction-Induced Lateral Spreading\",\"authors\":\"Yu Wang, Rolando P Orense\",\"doi\":\"10.3390/geotechnics3020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inclined piles have been widely applied as one of the countermeasures against large lateral spreading induced by soil liquefaction during earthquakes. However, the unsatisfactory performance of inclined piles in past events has impeded their application in seismic areas. To elucidate the performance of inclined piles when subjected to lateral spreading induced by soil liquefaction, numerical analyzes were performed using the OpenSees framework. For this purpose, a comprehensive three-dimensional finite element model was developed. Interface elements were used between the soil and the pile to account for the friction and gapping mechanisms. A multi-yield-surface plasticity constitutive relationship for sand was adopted to simulate the soil liquefaction behavior. Based on the proposed numerical model, parametric analyzes were conducted to investigate the influence of various factors on the behavior of inclined piles, including the raked angle of the pile, the ground slope, the soil profile, and the amplitude of the input motion. The response of the system indicates that inclined piles can behave better than vertical piles in decreasing soil deformation and the cap response. The influences of the investigated factors are highlighted to adopt the appropriate pile inclination in laterally spreading ground and maximize the advantages of using inclined piles.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3020019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

斜桩作为防止地震中土体液化引起的大面积横向蔓延的措施之一,得到了广泛的应用。然而,以往斜桩的性能并不理想,阻碍了其在地震地区的应用。为了阐明倾斜桩在受到土壤液化引起的横向扩展时的性能,使用OpenSees框架进行了数值分析。为此,建立了一个全面的三维有限元模型。土与桩之间采用界面单元来解释摩擦和间隙机制。采用砂土的多屈服面塑性本构关系来模拟土壤液化行为。基于所建立的数值模型,对斜桩倾斜角度、地基坡度、土体剖面、输入运动幅值等因素对斜桩行为的影响进行了参数化分析。结果表明,斜桩在减小土体变形和降低承台响应方面优于垂直桩。重点分析了各影响因素的影响,以便在横向扩展地基中采用合适的桩倾角,最大限度地发挥斜桩的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigation of Inclined Piles under Liquefaction-Induced Lateral Spreading
Inclined piles have been widely applied as one of the countermeasures against large lateral spreading induced by soil liquefaction during earthquakes. However, the unsatisfactory performance of inclined piles in past events has impeded their application in seismic areas. To elucidate the performance of inclined piles when subjected to lateral spreading induced by soil liquefaction, numerical analyzes were performed using the OpenSees framework. For this purpose, a comprehensive three-dimensional finite element model was developed. Interface elements were used between the soil and the pile to account for the friction and gapping mechanisms. A multi-yield-surface plasticity constitutive relationship for sand was adopted to simulate the soil liquefaction behavior. Based on the proposed numerical model, parametric analyzes were conducted to investigate the influence of various factors on the behavior of inclined piles, including the raked angle of the pile, the ground slope, the soil profile, and the amplitude of the input motion. The response of the system indicates that inclined piles can behave better than vertical piles in decreasing soil deformation and the cap response. The influences of the investigated factors are highlighted to adopt the appropriate pile inclination in laterally spreading ground and maximize the advantages of using inclined piles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1