N. Todorović, G. Stojadinović, Kamal AlJamal, M. Živić
{"title":"双氧钒(bpv (phen))对培养新生DRG神经元影响的形态计量学研究","authors":"N. Todorović, G. Stojadinović, Kamal AlJamal, M. Živić","doi":"10.46793/iccbi21.214t","DOIUrl":null,"url":null,"abstract":"Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.","PeriodicalId":9171,"journal":{"name":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE MORPHOMETRIC STUDY OF THE EFFECTS OF BISPEROXOVANADIUM (BPV(PHEN)) ON NEONATAL DRG NEURONS IN CULTURE\",\"authors\":\"N. Todorović, G. Stojadinović, Kamal AlJamal, M. Živić\",\"doi\":\"10.46793/iccbi21.214t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.\",\"PeriodicalId\":9171,\"journal\":{\"name\":\"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/iccbi21.214t\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/iccbi21.214t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE MORPHOMETRIC STUDY OF THE EFFECTS OF BISPEROXOVANADIUM (BPV(PHEN)) ON NEONATAL DRG NEURONS IN CULTURE
Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.