双氧钒(bpv (phen))对培养新生DRG神经元影响的形态计量学研究

N. Todorović, G. Stojadinović, Kamal AlJamal, M. Živić
{"title":"双氧钒(bpv (phen))对培养新生DRG神经元影响的形态计量学研究","authors":"N. Todorović, G. Stojadinović, Kamal AlJamal, M. Živić","doi":"10.46793/iccbi21.214t","DOIUrl":null,"url":null,"abstract":"Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.","PeriodicalId":9171,"journal":{"name":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE MORPHOMETRIC STUDY OF THE EFFECTS OF BISPEROXOVANADIUM (BPV(PHEN)) ON NEONATAL DRG NEURONS IN CULTURE\",\"authors\":\"N. Todorović, G. Stojadinović, Kamal AlJamal, M. Živić\",\"doi\":\"10.46793/iccbi21.214t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.\",\"PeriodicalId\":9171,\"journal\":{\"name\":\"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/iccbi21.214t\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/iccbi21.214t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与中枢神经系统中的神经元不同,周围神经元具有一定的内在再生能力。损伤后,周围神经元可以切换到细胞“生长状态”,其表达谱与早期发育阶段相似。我们观察了在成年神经元中具有生长刺激作用的处理诱导的年轻周围神经元形态计量参数的变化。与对照组相比,实验处理为:PTEN抑制剂BpV (phen);bFGF,碱性成纤维细胞生长因子。在治疗24h后固定的背根神经节新生神经元上观察神经突生长情况,并用抗神经丝H (NF-H)磷酸化抗体进行免疫染色。采用FIJI简单神经突示踪剂对单个神经元进行形态测定。处理24h后,与对照组相比,bFGF处理的神经突总长度、初级分支长度和终末分支长度均有所增加,而BpV处理的神经突长度没有增加。在所有与分支程度相关的测量参数中,BpV处理的神经元具有较小的离散值和较小的平均值,这让人想起文献数据表明BpV处理的神经元延长且分支较少。然而,BpV并没有像在成年神经元中报道的那样对神经突伸长产生积极影响。相反,bFGF刺激年轻神经元伸长的方式与在成年神经元上描述的效果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE MORPHOMETRIC STUDY OF THE EFFECTS OF BISPEROXOVANADIUM (BPV(PHEN)) ON NEONATAL DRG NEURONS IN CULTURE
Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ELECTROPHILIC ORGANOSELENIUM COMPOUNDS AND SARS-COV-2: PRO-OXIDANT ACTIVITY AS A MORE PROMISING WAY TOWARDS THE DRUGGABILITY DIRECT SCAVENGING ACTIVITY OF 4,7-DIHYDROXYCOUMARIN DERIVATIVE TOWARDS SERIES OF CHLOROMETHYLPEROXY RADICALS PLATINUM(IV) COMPLEX AND ITS CORRESPONDING LIGAND SUPPRESS CELL MOTILITY AND PROMOTE EXPRESSION OF FRIZZLED-7 RECEPTOR IN COLORECTAL CANCER CELLS A META-HEURISTIC MULTI-OBJECTIVE APPROACH TO THE MODEL SELECTION OF CONVOLUTION NEURAL NETWORKS FOR URINARY BLADDER CANCER DIAGNOSIS NOVEL LIGANDS OF HUMAN CYP7 ENZYMES – POSSIBLE MODULATORS OF CHOLESTEROL BLOOD LEVEL: COMPUTER SIMULATION STUDIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1