更好地理解聚能射流的形成和侵彻

D. Price, E. Harris, Frances G. Daykin
{"title":"更好地理解聚能射流的形成和侵彻","authors":"D. Price, E. Harris, Frances G. Daykin","doi":"10.1115/hvis2019-014","DOIUrl":null,"url":null,"abstract":"\n JeMMA, a set of relatively simple shaped-charge devices, has been designed in order to generate suitable data on jet formation, break-up and penetration for code validation purposes. The JeMMA Phase 1 device incorporated a copper liner and six of these shaped charges were manufactured as a technology demonstrator and fired in a special shaped charge facility in December 2016. The radiographic results obtained from the JeMMA Phase 1 and 2 devices, along with data reproducibility between trials, was excellent. This report gives an overview of the Phase 1 and 2 trials, including device design, the results of the firings conducted in Switzerland and details of the subsequent 2D and 3D hydrocode modelling carried out at AWE. The agreement between the data and both 2D and 3D modelling of the experiments is very pleasing, but highlights where further work is required. These JeMMA experiments will enhance the body of relevant data required to provide the validation of the hydrocode materials and modelling methodologies and enable us to better model the jetting threats of our experiments and have higher confidence in the results of the modelling.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Better Understanding of Shaped Charge Jet Formation and Penetration\",\"authors\":\"D. Price, E. Harris, Frances G. Daykin\",\"doi\":\"10.1115/hvis2019-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n JeMMA, a set of relatively simple shaped-charge devices, has been designed in order to generate suitable data on jet formation, break-up and penetration for code validation purposes. The JeMMA Phase 1 device incorporated a copper liner and six of these shaped charges were manufactured as a technology demonstrator and fired in a special shaped charge facility in December 2016. The radiographic results obtained from the JeMMA Phase 1 and 2 devices, along with data reproducibility between trials, was excellent. This report gives an overview of the Phase 1 and 2 trials, including device design, the results of the firings conducted in Switzerland and details of the subsequent 2D and 3D hydrocode modelling carried out at AWE. The agreement between the data and both 2D and 3D modelling of the experiments is very pleasing, but highlights where further work is required. These JeMMA experiments will enhance the body of relevant data required to provide the validation of the hydrocode materials and modelling methodologies and enable us to better model the jetting threats of our experiments and have higher confidence in the results of the modelling.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

JeMMA是一套相对简单的聚能装置,其设计目的是为了生成有关射流形成、破裂和穿透的适当数据,以用于代码验证。JeMMA第一阶段装置包括一个铜衬管,并制造了6个聚能装药作为技术演示,并于2016年12月在一个特殊的聚能装药设施中进行了发射。从JeMMA 1期和2期设备获得的放射学结果以及试验之间的数据可重复性非常好。本报告概述了第一阶段和第二阶段的试验,包括设备设计、在瑞士进行的发射结果以及随后在AWE进行的2D和3D hydrocode建模的细节。数据和实验的2D和3D模型之间的一致是非常令人高兴的,但突出了需要进一步工作的地方。这些JeMMA实验将增强所需的相关数据体,以提供对水码材料和建模方法的验证,并使我们能够更好地模拟实验中的喷射威胁,并对建模结果有更高的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Better Understanding of Shaped Charge Jet Formation and Penetration
JeMMA, a set of relatively simple shaped-charge devices, has been designed in order to generate suitable data on jet formation, break-up and penetration for code validation purposes. The JeMMA Phase 1 device incorporated a copper liner and six of these shaped charges were manufactured as a technology demonstrator and fired in a special shaped charge facility in December 2016. The radiographic results obtained from the JeMMA Phase 1 and 2 devices, along with data reproducibility between trials, was excellent. This report gives an overview of the Phase 1 and 2 trials, including device design, the results of the firings conducted in Switzerland and details of the subsequent 2D and 3D hydrocode modelling carried out at AWE. The agreement between the data and both 2D and 3D modelling of the experiments is very pleasing, but highlights where further work is required. These JeMMA experiments will enhance the body of relevant data required to provide the validation of the hydrocode materials and modelling methodologies and enable us to better model the jetting threats of our experiments and have higher confidence in the results of the modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1