利用裂缝高度限制提高水平井多级水力压裂效果

A. Valiullin, V. Astafyev, I. Osipov
{"title":"利用裂缝高度限制提高水平井多级水力压裂效果","authors":"A. Valiullin, V. Astafyev, I. Osipov","doi":"10.2118/196986-ms","DOIUrl":null,"url":null,"abstract":"\n The cost-effective development of low-permeability hydrocarbon formations of small thickness requires horizontal wells with multi-stage hydraulic fracturing (MS-Frac). The presence of higher or lower layers that are water-saturated and weak barriers to height growth imposes a restriction on the desirable geometry of the fracture to prevent a breakthrough into a flooded interval. Combining several methods of fracture height restriction and controlling such height can improve the efficiency of multi-stage hydraulic fracturing. The first technology to control the effective pressure was based on changing fracturing fluid rheology and resulted in a decrease in the net pressure and the fracture height. The main treatment buffer utilized a hybrid fluid design. The second technology used to limit the height of the fracture was based on creating artificial barriers inside the fracture that restrict height growth. In this case, a special mixture of proppants was pumped before the primary proppant-laden fracturing main stage. The construction of a horizontal well with a multizone completion implies the possibility of carrying out small volume multistage fracturing to prevent breakthrough into a water-saturated interval, creating an effective drainage zone. For the first time in the given field, MS-Frac was performed using combined technologies and techniques for fracture height growth restriction. The operations demonstrated successful results of horizontal multizone well treatments, where the rheology and fluid rate control methods were used to restrict the fracture geometry growth, and proppant slugs were used to create artificial barriers to arrest the fracture height growth.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Effectiveness of Multi-Stage Hydraulic Fracturing in Horizontal Wells by Fracture Height Restriction\",\"authors\":\"A. Valiullin, V. Astafyev, I. Osipov\",\"doi\":\"10.2118/196986-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The cost-effective development of low-permeability hydrocarbon formations of small thickness requires horizontal wells with multi-stage hydraulic fracturing (MS-Frac). The presence of higher or lower layers that are water-saturated and weak barriers to height growth imposes a restriction on the desirable geometry of the fracture to prevent a breakthrough into a flooded interval. Combining several methods of fracture height restriction and controlling such height can improve the efficiency of multi-stage hydraulic fracturing. The first technology to control the effective pressure was based on changing fracturing fluid rheology and resulted in a decrease in the net pressure and the fracture height. The main treatment buffer utilized a hybrid fluid design. The second technology used to limit the height of the fracture was based on creating artificial barriers inside the fracture that restrict height growth. In this case, a special mixture of proppants was pumped before the primary proppant-laden fracturing main stage. The construction of a horizontal well with a multizone completion implies the possibility of carrying out small volume multistage fracturing to prevent breakthrough into a water-saturated interval, creating an effective drainage zone. For the first time in the given field, MS-Frac was performed using combined technologies and techniques for fracture height growth restriction. The operations demonstrated successful results of horizontal multizone well treatments, where the rheology and fluid rate control methods were used to restrict the fracture geometry growth, and proppant slugs were used to create artificial barriers to arrest the fracture height growth.\",\"PeriodicalId\":10977,\"journal\":{\"name\":\"Day 2 Wed, October 23, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 23, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196986-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196986-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了经济高效地开发小厚度低渗透油气藏,需要水平井多级水力压裂技术。较高或较低的水饱和层的存在,以及对高度增长的弱屏障,限制了裂缝的理想几何形状,以防止突破进入淹水层段。结合几种限制裂缝高度的方法,控制裂缝高度,可以提高多级水力压裂的效率。第一个控制有效压力的技术是基于改变压裂液的流变性,导致净压力和裂缝高度的降低。主处理缓冲液采用混合流体设计。第二种用于限制裂缝高度的技术是在裂缝内部制造人工屏障,以限制裂缝高度的增长。在这种情况下,一种特殊的支撑剂混合物在一次支撑剂填充压裂主级之前被泵入。多层完井水平井的施工意味着可以进行小体积的多级压裂,以防止钻进含水饱和层段,从而形成有效的排水层。在该油田,MS-Frac首次采用了限制裂缝高度的综合技术。这些作业展示了水平多层井处理的成功成果,其中使用了流变学和流体速率控制方法来限制裂缝几何形状的增长,并使用支撑剂段塞来制造人工屏障来阻止裂缝高度的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Effectiveness of Multi-Stage Hydraulic Fracturing in Horizontal Wells by Fracture Height Restriction
The cost-effective development of low-permeability hydrocarbon formations of small thickness requires horizontal wells with multi-stage hydraulic fracturing (MS-Frac). The presence of higher or lower layers that are water-saturated and weak barriers to height growth imposes a restriction on the desirable geometry of the fracture to prevent a breakthrough into a flooded interval. Combining several methods of fracture height restriction and controlling such height can improve the efficiency of multi-stage hydraulic fracturing. The first technology to control the effective pressure was based on changing fracturing fluid rheology and resulted in a decrease in the net pressure and the fracture height. The main treatment buffer utilized a hybrid fluid design. The second technology used to limit the height of the fracture was based on creating artificial barriers inside the fracture that restrict height growth. In this case, a special mixture of proppants was pumped before the primary proppant-laden fracturing main stage. The construction of a horizontal well with a multizone completion implies the possibility of carrying out small volume multistage fracturing to prevent breakthrough into a water-saturated interval, creating an effective drainage zone. For the first time in the given field, MS-Frac was performed using combined technologies and techniques for fracture height growth restriction. The operations demonstrated successful results of horizontal multizone well treatments, where the rheology and fluid rate control methods were used to restrict the fracture geometry growth, and proppant slugs were used to create artificial barriers to arrest the fracture height growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Application of the Fluorescent Microspheres Method Technology in Horizontal Wells of the Upper Salym Oil Field: Efficiency of the Method, Technology and Approach Evolution of Horizontal Wells Production Logging Using Markers Successful Implementation of Managed Pressure Drilling Technology Under the Conditions of Catastrophic Mud Losses in the Kuyumbinskoe Field Completion Design Optimization for Unconventional Wells Using Large Scale Computational Science Assessing Efficiency of Multiwell Retrospective Testing MRT in Analysis of Cross-Well Interference and Prediction of Formation and Bottom- Hole Pressure Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1