热声驱动热声制冷机的CFD建模与性能分析

Zahra Bouramdane, A. Bah, Mohammed Alaoui, N. Martaj
{"title":"热声驱动热声制冷机的CFD建模与性能分析","authors":"Zahra Bouramdane, A. Bah, Mohammed Alaoui, N. Martaj","doi":"10.1142/s2010132521500292","DOIUrl":null,"url":null,"abstract":"Although thermoacoustic devices comprise simple components, the design of these machines is very challenging. In order to predict the behavior and optimize the performance of a thermoacoustic refrigerator driven by a standing-wave thermoacoustic engine, considering the changes in geometrical parameters, two analogies have been presented in this paper. The first analogy is based on CFD analysis where a 2D model is implemented to investigate the influence of stack parameters on the refrigerator performance, to analyze the time variation of the temperature gradient across the stack, and to examine the refrigerator performance in terms of refrigeration temperature. The second analogy is based on the use of an optimization algorithm based on the simplified linear thermoacoustic theory applied for designing thermoacoustic refrigerators with different stack parameters and operating conditions. Simulation results show that the engine produced a high-powered acoustic wave with a pressure amplitude of 23[Formula: see text]kPa and a frequency of 584[Formula: see text]Hz and this wave applies a temperature difference across the refrigeration stack with a cooling temperature of 292.8[Formula: see text]K when the stacks are positioned next to the pressure antinode. The results from the algorithm give the ability to design any thermoacoustic refrigerator with high performance by picking the appropriate parameters.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"123 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CFD Modeling and Performance Analysis of a Thermoacoustically Driven Thermoacoustic Refrigerator\",\"authors\":\"Zahra Bouramdane, A. Bah, Mohammed Alaoui, N. Martaj\",\"doi\":\"10.1142/s2010132521500292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although thermoacoustic devices comprise simple components, the design of these machines is very challenging. In order to predict the behavior and optimize the performance of a thermoacoustic refrigerator driven by a standing-wave thermoacoustic engine, considering the changes in geometrical parameters, two analogies have been presented in this paper. The first analogy is based on CFD analysis where a 2D model is implemented to investigate the influence of stack parameters on the refrigerator performance, to analyze the time variation of the temperature gradient across the stack, and to examine the refrigerator performance in terms of refrigeration temperature. The second analogy is based on the use of an optimization algorithm based on the simplified linear thermoacoustic theory applied for designing thermoacoustic refrigerators with different stack parameters and operating conditions. Simulation results show that the engine produced a high-powered acoustic wave with a pressure amplitude of 23[Formula: see text]kPa and a frequency of 584[Formula: see text]Hz and this wave applies a temperature difference across the refrigeration stack with a cooling temperature of 292.8[Formula: see text]K when the stacks are positioned next to the pressure antinode. The results from the algorithm give the ability to design any thermoacoustic refrigerator with high performance by picking the appropriate parameters.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010132521500292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521500292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2

摘要

虽然热声装置由简单的部件组成,但这些机器的设计非常具有挑战性。为了预测由驻波热声发动机驱动的热声制冷机的性能并优化其性能,考虑了几何参数的变化,本文提出了两种类比方法。第一个类比是基于CFD分析,利用二维模型研究堆参数对制冷机性能的影响,分析堆上温度梯度的时间变化,并从制冷温度的角度考察制冷机性能。第二个类比是基于基于简化线性热声理论的优化算法,用于设计不同堆叠参数和运行条件的热声制冷机。仿真结果表明,发动机产生的高功率声波压力幅值为23[公式:见文]kPa,频率为584[公式:见文]Hz,当堆栈靠近压力天线时,该波在整个制冷堆栈上施加的温差为292.8[公式:见文]K。通过选择合适的参数,该算法的结果可以设计出高性能的热声制冷机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFD Modeling and Performance Analysis of a Thermoacoustically Driven Thermoacoustic Refrigerator
Although thermoacoustic devices comprise simple components, the design of these machines is very challenging. In order to predict the behavior and optimize the performance of a thermoacoustic refrigerator driven by a standing-wave thermoacoustic engine, considering the changes in geometrical parameters, two analogies have been presented in this paper. The first analogy is based on CFD analysis where a 2D model is implemented to investigate the influence of stack parameters on the refrigerator performance, to analyze the time variation of the temperature gradient across the stack, and to examine the refrigerator performance in terms of refrigeration temperature. The second analogy is based on the use of an optimization algorithm based on the simplified linear thermoacoustic theory applied for designing thermoacoustic refrigerators with different stack parameters and operating conditions. Simulation results show that the engine produced a high-powered acoustic wave with a pressure amplitude of 23[Formula: see text]kPa and a frequency of 584[Formula: see text]Hz and this wave applies a temperature difference across the refrigeration stack with a cooling temperature of 292.8[Formula: see text]K when the stacks are positioned next to the pressure antinode. The results from the algorithm give the ability to design any thermoacoustic refrigerator with high performance by picking the appropriate parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
0
期刊介绍: As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.
期刊最新文献
A review on thermochemical seasonal solar energy storage materials and modeling methods Parametric analysis of chiller plant energy consumption in a tropical climate Experimental investigation of ice slurry viscosity Performance enhancement and environmental analysis of vapor compression refrigeration system with dedicated mechanical subcooling Energy analysis of the integration of HRV and direct evaporative cooling for energy efficiency in buildings: a case study in Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1