{"title":"色散扁平锗掺杂二氧化硅改性超低约束损耗六方光子晶体光纤设计","authors":"S. Kabir, G. Hasanuzzaman, M. Khan","doi":"10.1109/CEEE.2015.7428232","DOIUrl":null,"url":null,"abstract":"This paper presents an optimum design for dispersion managed photonic crystal fibers with low confinement losses. The COMSOL multi-physics 4.2 software is used as the simulation tool. According to simulation, a five-ringed modified hexagonal photonic crystal fiber (MH-PCF) having germanium (Ge) doped silica core can be designed with a low confinement loss at 1550 nm of the order 1.026×10-14 dB/km with simultaneously nearly-zero ultra-flattened chromatic dispersion of 0 ± 0.35 ps/nm/km in a wavelength range of 1.30 to 1.65 μm as well as large effective area in a wide range of wavelengths. The fiber having a modest number of design parameters is suitable for wavelength division multiplexing (WDM) system.","PeriodicalId":6490,"journal":{"name":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"29 1","pages":"113-116"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of a dispersion flattened germanium doped silica modified hexagonal photonic crystal fiber with ultra low confinement losses\",\"authors\":\"S. Kabir, G. Hasanuzzaman, M. Khan\",\"doi\":\"10.1109/CEEE.2015.7428232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimum design for dispersion managed photonic crystal fibers with low confinement losses. The COMSOL multi-physics 4.2 software is used as the simulation tool. According to simulation, a five-ringed modified hexagonal photonic crystal fiber (MH-PCF) having germanium (Ge) doped silica core can be designed with a low confinement loss at 1550 nm of the order 1.026×10-14 dB/km with simultaneously nearly-zero ultra-flattened chromatic dispersion of 0 ± 0.35 ps/nm/km in a wavelength range of 1.30 to 1.65 μm as well as large effective area in a wide range of wavelengths. The fiber having a modest number of design parameters is suitable for wavelength division multiplexing (WDM) system.\",\"PeriodicalId\":6490,\"journal\":{\"name\":\"2015 International Conference on Electrical & Electronic Engineering (ICEEE)\",\"volume\":\"29 1\",\"pages\":\"113-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical & Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEE.2015.7428232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEE.2015.7428232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a dispersion flattened germanium doped silica modified hexagonal photonic crystal fiber with ultra low confinement losses
This paper presents an optimum design for dispersion managed photonic crystal fibers with low confinement losses. The COMSOL multi-physics 4.2 software is used as the simulation tool. According to simulation, a five-ringed modified hexagonal photonic crystal fiber (MH-PCF) having germanium (Ge) doped silica core can be designed with a low confinement loss at 1550 nm of the order 1.026×10-14 dB/km with simultaneously nearly-zero ultra-flattened chromatic dispersion of 0 ± 0.35 ps/nm/km in a wavelength range of 1.30 to 1.65 μm as well as large effective area in a wide range of wavelengths. The fiber having a modest number of design parameters is suitable for wavelength division multiplexing (WDM) system.