微生物砷代谢与反应能量学

1区 地球科学 Q1 Earth and Planetary Sciences Reviews in Mineralogy & Geochemistry Pub Date : 2014-01-01 DOI:10.2138/RMG.2014.79.7
J. Amend, C. Saltikov, G. Lu, Jaime Hernández
{"title":"微生物砷代谢与反应能量学","authors":"J. Amend, C. Saltikov, G. Lu, Jaime Hernández","doi":"10.2138/RMG.2014.79.7","DOIUrl":null,"url":null,"abstract":"Reviews on the geochemistry, biochemistry, or microbial ecology of arsenic—and there are many—commonly start with statements about the toxicity of this metalloid (Newman et al. 1998; Rosen 2002; Smedley and Kinniburgh 2002; Oremland and Stolz 2003; Oremland et al. 2004, 2009; Silver and Phung 2005; Lloyd and Oremland 2006; Stolz et al. 2006, 2010; Bhattacharjee and Rosen 2007; Paez-Espino et al. 2009; Tsai et al. 2009; Slyemi and Bonnefoy 2012; Cavalca et al. 2013b; Kruger et al. 2013; van Lis et al. 2013; Watanabe and Hirano 2013; Zhu et al. 2014). These introductions are sometimes followed by famous anecdotes of foul play (e.g., was Napoleon I poisoned by his British captors?) and reminders that arsenic was used as a popular medicine, tonic, and aphrodisiac since the 18th century. Recall that the 1908 Nobel Prize in medicine was awarded to Paul Ehrlich, in part, for the discovery of an organoarsenical (Salvarsan) as a treatment for syphilis—this was arguably also the first documented application of what would later become known as “chemotherapy.” Readers are then often reminded that arsenic is still used today in pesticides and herbicides, in animal feed, as a wood preservative, in electronic devices, and in specialized medical treatments. Arsenic is toxic in both of its common oxidation states, the oxidized arsenate, As(V), and the reduced arsenite, As(III). As a molecular analog of phosphate, arsenate uses a phosphate transport system to enter the cell and there inhibits the phosphorylation of ADP and thereby the synthesis of ATP. Arsenate can also substitute for phosphate in various biomolecules, thus disrupting key pathways, including glycolysis. Arsenite is even more toxic than arsenate and enters the cell much like glycerol molecules via aqua-glyceroporins (Cullen …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Microbial Arsenic Metabolism and Reaction Energetics\",\"authors\":\"J. Amend, C. Saltikov, G. Lu, Jaime Hernández\",\"doi\":\"10.2138/RMG.2014.79.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reviews on the geochemistry, biochemistry, or microbial ecology of arsenic—and there are many—commonly start with statements about the toxicity of this metalloid (Newman et al. 1998; Rosen 2002; Smedley and Kinniburgh 2002; Oremland and Stolz 2003; Oremland et al. 2004, 2009; Silver and Phung 2005; Lloyd and Oremland 2006; Stolz et al. 2006, 2010; Bhattacharjee and Rosen 2007; Paez-Espino et al. 2009; Tsai et al. 2009; Slyemi and Bonnefoy 2012; Cavalca et al. 2013b; Kruger et al. 2013; van Lis et al. 2013; Watanabe and Hirano 2013; Zhu et al. 2014). These introductions are sometimes followed by famous anecdotes of foul play (e.g., was Napoleon I poisoned by his British captors?) and reminders that arsenic was used as a popular medicine, tonic, and aphrodisiac since the 18th century. Recall that the 1908 Nobel Prize in medicine was awarded to Paul Ehrlich, in part, for the discovery of an organoarsenical (Salvarsan) as a treatment for syphilis—this was arguably also the first documented application of what would later become known as “chemotherapy.” Readers are then often reminded that arsenic is still used today in pesticides and herbicides, in animal feed, as a wood preservative, in electronic devices, and in specialized medical treatments. Arsenic is toxic in both of its common oxidation states, the oxidized arsenate, As(V), and the reduced arsenite, As(III). As a molecular analog of phosphate, arsenate uses a phosphate transport system to enter the cell and there inhibits the phosphorylation of ADP and thereby the synthesis of ATP. Arsenate can also substitute for phosphate in various biomolecules, thus disrupting key pathways, including glycolysis. Arsenite is even more toxic than arsenate and enters the cell much like glycerol molecules via aqua-glyceroporins (Cullen …\",\"PeriodicalId\":49624,\"journal\":{\"name\":\"Reviews in Mineralogy & Geochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mineralogy & Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/RMG.2014.79.7\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy & Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/RMG.2014.79.7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 36

摘要

对砷的地球化学、生物化学或微生物生态学的评论——有很多——通常以这种类金属的毒性陈述开始(Newman etal . 1998;Rosen 2002;Smedley and Kinniburgh 2002;Oremland and Stolz 2003;Oremland et al. 2004,2009;2005年;Lloyd and Oremland 2006;Stolz et al. 2006, 2010;Bhattacharjee and Rosen 2007;Paez-Espino et al. 2009;Tsai et al. 2009;Slyemi and Bonnefoy 2012;Cavalca et al. 2013b;Kruger et al. 2013;van Lis et al. 2013;Watanabe and Hirano 2013;Zhu et al. 2014)。这些介绍之后,有时还会有一些著名的谋杀轶事(例如,拿破仑一世是被俘获他的英国人毒死的吗?),并提醒人们,自18世纪以来,砷就被用作一种流行的药物、补品和壮阳药。回想一下,1908年诺贝尔医学奖被授予保罗·埃利希(Paul Ehrlich),部分原因是他发现了一种用于治疗梅毒的有机砷(Salvarsan)——这也可以说是后来被称为“化疗”的第一次有记录的应用。读者们常常会被提醒,砷今天仍然被用于杀虫剂和除草剂、动物饲料、木材防腐剂、电子设备和专门的医疗中。砷在两种常见的氧化状态下都是有毒的,即氧化砷酸盐As(V)和还原亚砷酸盐As(III)。作为磷酸盐的分子类似物,砷酸盐通过磷酸盐转运系统进入细胞,抑制ADP的磷酸化,从而抑制ATP的合成。砷酸盐还可以替代各种生物分子中的磷酸盐,从而破坏包括糖酵解在内的关键途径。亚砷酸盐甚至比砷酸盐毒性更大,它像甘油分子一样通过水-甘油孔蛋白进入细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial Arsenic Metabolism and Reaction Energetics
Reviews on the geochemistry, biochemistry, or microbial ecology of arsenic—and there are many—commonly start with statements about the toxicity of this metalloid (Newman et al. 1998; Rosen 2002; Smedley and Kinniburgh 2002; Oremland and Stolz 2003; Oremland et al. 2004, 2009; Silver and Phung 2005; Lloyd and Oremland 2006; Stolz et al. 2006, 2010; Bhattacharjee and Rosen 2007; Paez-Espino et al. 2009; Tsai et al. 2009; Slyemi and Bonnefoy 2012; Cavalca et al. 2013b; Kruger et al. 2013; van Lis et al. 2013; Watanabe and Hirano 2013; Zhu et al. 2014). These introductions are sometimes followed by famous anecdotes of foul play (e.g., was Napoleon I poisoned by his British captors?) and reminders that arsenic was used as a popular medicine, tonic, and aphrodisiac since the 18th century. Recall that the 1908 Nobel Prize in medicine was awarded to Paul Ehrlich, in part, for the discovery of an organoarsenical (Salvarsan) as a treatment for syphilis—this was arguably also the first documented application of what would later become known as “chemotherapy.” Readers are then often reminded that arsenic is still used today in pesticides and herbicides, in animal feed, as a wood preservative, in electronic devices, and in specialized medical treatments. Arsenic is toxic in both of its common oxidation states, the oxidized arsenate, As(V), and the reduced arsenite, As(III). As a molecular analog of phosphate, arsenate uses a phosphate transport system to enter the cell and there inhibits the phosphorylation of ADP and thereby the synthesis of ATP. Arsenate can also substitute for phosphate in various biomolecules, thus disrupting key pathways, including glycolysis. Arsenite is even more toxic than arsenate and enters the cell much like glycerol molecules via aqua-glyceroporins (Cullen …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mineralogy & Geochemistry
Reviews in Mineralogy & Geochemistry 地学-地球化学与地球物理
CiteScore
8.30
自引率
0.00%
发文量
39
期刊介绍: RiMG is a series of multi-authored, soft-bound volumes containing concise reviews of the literature and advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry. The content of each volume consists of fully developed text which can be used for self-study, research, or as a text-book for graduate-level courses. RiMG volumes are typically produced in conjunction with a short course but can also be published without a short course. The series is jointly published by the Mineralogical Society of America (MSA) and the Geochemical Society.
期刊最新文献
Triple Oxygen Isotope Variations in Earth’s Crust Why Measure 17O? Historical Perspective, Triple-Isotope Systematics and Selected Applications Isotopic Traces of Atmospheric O2 in Rocks, Minerals, and Melts Triple Oxygen Isotopes in Silica–Water and Carbonate–Water Systems Climbing to the Top of Mount Fuji: Uniting Theory and Observations of Oxygen Triple Isotope Systematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1