W. Yang, Xianghan Zheng, Qiongxia Huang, Yu Liu, Yimi Chen, ZhiGang Song
{"title":"结合BPSO和ELM模型推断新的lncrna -疾病关联","authors":"W. Yang, Xianghan Zheng, Qiongxia Huang, Yu Liu, Yimi Chen, ZhiGang Song","doi":"10.4018/ijdwm.317092","DOIUrl":null,"url":null,"abstract":"It has been widely known that long non-coding RNA (lncRNA) plays an important role in gene expression and regulation. However, due to a few characteristics of lncRNA (e.g., huge amounts of data, high dimension, lack of noted samples, etc.), identifying key lncRNA closely related to specific disease is nearly impossible. In this paper, the authors propose a computational method to predict key lncRNA closely related to its corresponding disease. The proposed solution implements a BPSO based intelligent algorithm to select possible optimal lncRNA subset, and then uses ML-ELM based deep learning model to evaluate each lncRNA subset. After that, wrapper feature extraction method is used to select lncRNAs, which are closely related to the pathophysiology of disease from massive data. Experimentation on three typical open datasets proves the feasibility and efficiency of our proposed solution. This proposed solution achieves above 93% accuracy, the best ever.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining BPSO and ELM Models for Inferring Novel lncRNA-Disease Associations\",\"authors\":\"W. Yang, Xianghan Zheng, Qiongxia Huang, Yu Liu, Yimi Chen, ZhiGang Song\",\"doi\":\"10.4018/ijdwm.317092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been widely known that long non-coding RNA (lncRNA) plays an important role in gene expression and regulation. However, due to a few characteristics of lncRNA (e.g., huge amounts of data, high dimension, lack of noted samples, etc.), identifying key lncRNA closely related to specific disease is nearly impossible. In this paper, the authors propose a computational method to predict key lncRNA closely related to its corresponding disease. The proposed solution implements a BPSO based intelligent algorithm to select possible optimal lncRNA subset, and then uses ML-ELM based deep learning model to evaluate each lncRNA subset. After that, wrapper feature extraction method is used to select lncRNAs, which are closely related to the pathophysiology of disease from massive data. Experimentation on three typical open datasets proves the feasibility and efficiency of our proposed solution. This proposed solution achieves above 93% accuracy, the best ever.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.317092\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.317092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Combining BPSO and ELM Models for Inferring Novel lncRNA-Disease Associations
It has been widely known that long non-coding RNA (lncRNA) plays an important role in gene expression and regulation. However, due to a few characteristics of lncRNA (e.g., huge amounts of data, high dimension, lack of noted samples, etc.), identifying key lncRNA closely related to specific disease is nearly impossible. In this paper, the authors propose a computational method to predict key lncRNA closely related to its corresponding disease. The proposed solution implements a BPSO based intelligent algorithm to select possible optimal lncRNA subset, and then uses ML-ELM based deep learning model to evaluate each lncRNA subset. After that, wrapper feature extraction method is used to select lncRNAs, which are closely related to the pathophysiology of disease from massive data. Experimentation on three typical open datasets proves the feasibility and efficiency of our proposed solution. This proposed solution achieves above 93% accuracy, the best ever.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving