{"title":"电子束技术在烟气处理中的应用现状与展望","authors":"Norman W. Frank","doi":"10.1016/1359-0197(92)90078-T","DOIUrl":null,"url":null,"abstract":"<div><p>The electron-beam process is one of the most effective methods of removing SO<sub>2</sub> and NO<sub><em>x</em></sub> from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO<sub>2</sub> and NO<sub><em>x</em></sub> to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO<sub>2</sub> and NO<sub><em>x</em></sub> from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.</p></div>","PeriodicalId":14262,"journal":{"name":"International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry","volume":"40 4","pages":"Pages 267-272"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1359-0197(92)90078-T","citationCount":"4","resultStr":"{\"title\":\"Status and perspectives for the electron beam technology for flue gases treatment\",\"authors\":\"Norman W. Frank\",\"doi\":\"10.1016/1359-0197(92)90078-T\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electron-beam process is one of the most effective methods of removing SO<sub>2</sub> and NO<sub><em>x</em></sub> from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO<sub>2</sub> and NO<sub><em>x</em></sub> to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO<sub>2</sub> and NO<sub><em>x</em></sub> from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.</p></div>\",\"PeriodicalId\":14262,\"journal\":{\"name\":\"International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry\",\"volume\":\"40 4\",\"pages\":\"Pages 267-272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1359-0197(92)90078-T\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/135901979290078T\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/135901979290078T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Status and perspectives for the electron beam technology for flue gases treatment
The electron-beam process is one of the most effective methods of removing SO2 and NOx from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO2 and NOx to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO2 and NOx from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.