远方的发现:预测空间中更远的旅程

T. Cohen, D. Widdows, R. Schvaneveldt, T. Rindflesch
{"title":"远方的发现:预测空间中更远的旅程","authors":"T. Cohen, D. Widdows, R. Schvaneveldt, T. Rindflesch","doi":"10.1109/BIBMW.2012.6470307","DOIUrl":null,"url":null,"abstract":"In this paper we extend the Predication-based Semantic Indexing (PSI) approach to search efficiently across triple-predicate pathways in a database of predications extracted from the biomédical literature by the SemRep system. PSI circumvents the combinatorial explosion of possible pathways by converting the task of traversing individual predications into the task of measuring the similarity between composite concept vectors. Consequently, search time for single, double or triple predicate paths is identical once the relevant concept vectors have been constructed. This paper describes the application of PSI to infer double and triple predicate pathways connecting example pairs of therapeutically related drugs and diseases; and to use these inferred pathways to guide search for treatments for other diseases. In an evaluation of the utility of vector-based dual- and triple-predicate path search in a simulated discovery experiment, these approaches are found to be complementary, with best performance obtained through their application in combination.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Discovery at a distance: Farther journeys in predication space\",\"authors\":\"T. Cohen, D. Widdows, R. Schvaneveldt, T. Rindflesch\",\"doi\":\"10.1109/BIBMW.2012.6470307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend the Predication-based Semantic Indexing (PSI) approach to search efficiently across triple-predicate pathways in a database of predications extracted from the biomédical literature by the SemRep system. PSI circumvents the combinatorial explosion of possible pathways by converting the task of traversing individual predications into the task of measuring the similarity between composite concept vectors. Consequently, search time for single, double or triple predicate paths is identical once the relevant concept vectors have been constructed. This paper describes the application of PSI to infer double and triple predicate pathways connecting example pairs of therapeutically related drugs and diseases; and to use these inferred pathways to guide search for treatments for other diseases. In an evaluation of the utility of vector-based dual- and triple-predicate path search in a simulated discovery experiment, these approaches are found to be complementary, with best performance obtained through their application in combination.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们扩展了基于谓词的语义索引(PSI)方法,以便在SemRep系统从生物医学文献中提取的谓词数据库中高效地搜索三谓词路径。PSI通过将遍历单个谓词的任务转换为测量复合概念向量之间相似性的任务,避免了可能路径的组合爆炸。因此,一旦构建了相关的概念向量,单个、两个或三个谓词路径的搜索时间是相同的。本文描述了PSI在推断连接治疗相关药物和疾病的示例对的双和三重谓词通路中的应用;并利用这些推断的途径来指导寻找其他疾病的治疗方法。在模拟发现实验中对基于向量的双谓词和三谓词路径搜索的效用进行了评估,发现这些方法是互补的,通过组合应用可以获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery at a distance: Farther journeys in predication space
In this paper we extend the Predication-based Semantic Indexing (PSI) approach to search efficiently across triple-predicate pathways in a database of predications extracted from the biomédical literature by the SemRep system. PSI circumvents the combinatorial explosion of possible pathways by converting the task of traversing individual predications into the task of measuring the similarity between composite concept vectors. Consequently, search time for single, double or triple predicate paths is identical once the relevant concept vectors have been constructed. This paper describes the application of PSI to infer double and triple predicate pathways connecting example pairs of therapeutically related drugs and diseases; and to use these inferred pathways to guide search for treatments for other diseases. In an evaluation of the utility of vector-based dual- and triple-predicate path search in a simulated discovery experiment, these approaches are found to be complementary, with best performance obtained through their application in combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1