网络热力学与复杂性:向关系系统理论的过渡

Donald C. Mikulecky
{"title":"网络热力学与复杂性:向关系系统理论的过渡","authors":"Donald C. Mikulecky","doi":"10.1016/S0097-8485(01)00072-9","DOIUrl":null,"url":null,"abstract":"<div><p>Most systems of interest in today's world are highly structured and highly interactive. They cannot be reduced to simple components without losing a great deal of their system identity. Network thermodynamics is a marriage of classical and non-equilibrium thermodynamics along with network theory and kinetics to provide a practical framework for handling these systems. The ultimate result of any network thermodynamic model is still a set of state vector equations. But these equations are built in a new informative way so that information about the organization of the system is identifiable in the structure of the equations. The domain of network thermodynamics is all of physical systems theory. By using the powerful circuit simulator, the Simulation Program with Integrated Circuit Emphasis (<span>spice</span>), as a general systems simulator, any highly non-linear stiff system can be simulated. Furthermore, the theoretical findings of network thermodynamics are important new contributions. The contribution of a metric structure to thermodynamics compliments and goes beyond other recent work in this area. The application of topological reasoning through Tellegen's theorem shows that a mathematical structure exists into which all physical systems can be represented canonically. The old results in non-equilibrium thermodynamics due to Onsager can be reinterpreted and extended using these new, more holistic concepts about systems. Some examples are given. These are but a few of the many applications of network thermodynamics that have been proven to extend our capacity for handling the highly interactive, non-linear systems that populate both biology and chemistry. The presentation is carried out in the context of the recent growth of the field of complexity science. In particular, the context used for this discussion derives from the work of the mathematical biologist, Robert Rosen.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"25 4","pages":"Pages 369-391"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00072-9","citationCount":"71","resultStr":"{\"title\":\"Network thermodynamics and complexity: a transition to relational systems theory\",\"authors\":\"Donald C. Mikulecky\",\"doi\":\"10.1016/S0097-8485(01)00072-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most systems of interest in today's world are highly structured and highly interactive. They cannot be reduced to simple components without losing a great deal of their system identity. Network thermodynamics is a marriage of classical and non-equilibrium thermodynamics along with network theory and kinetics to provide a practical framework for handling these systems. The ultimate result of any network thermodynamic model is still a set of state vector equations. But these equations are built in a new informative way so that information about the organization of the system is identifiable in the structure of the equations. The domain of network thermodynamics is all of physical systems theory. By using the powerful circuit simulator, the Simulation Program with Integrated Circuit Emphasis (<span>spice</span>), as a general systems simulator, any highly non-linear stiff system can be simulated. Furthermore, the theoretical findings of network thermodynamics are important new contributions. The contribution of a metric structure to thermodynamics compliments and goes beyond other recent work in this area. The application of topological reasoning through Tellegen's theorem shows that a mathematical structure exists into which all physical systems can be represented canonically. The old results in non-equilibrium thermodynamics due to Onsager can be reinterpreted and extended using these new, more holistic concepts about systems. Some examples are given. These are but a few of the many applications of network thermodynamics that have been proven to extend our capacity for handling the highly interactive, non-linear systems that populate both biology and chemistry. The presentation is carried out in the context of the recent growth of the field of complexity science. In particular, the context used for this discussion derives from the work of the mathematical biologist, Robert Rosen.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"25 4\",\"pages\":\"Pages 369-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00072-9\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501000729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501000729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

当今世界上大多数令人感兴趣的系统都是高度结构化和高度互动性的。它们不能被简化为简单的组件而不丢失大量的系统标识。网络热力学是经典热力学和非平衡热力学与网络理论和动力学的结合,为处理这些系统提供了一个实用的框架。任何网络热力学模型的最终结果仍然是一组状态向量方程。但是这些方程是以一种新的信息方式建立的所以关于系统组织的信息在方程的结构中是可识别的。网络热力学的领域是所有的物理系统理论。通过使用功能强大的电路模拟器,集成电路仿真程序(spice)作为一个通用的系统模拟器,可以模拟任何高度非线性的刚性系统。此外,网络热力学的理论发现是重要的新贡献。公制结构对热力学的贡献超越了这一领域最近的其他工作。通过Tellegen定理的拓扑推理的应用表明存在一个数学结构,所有的物理系统都可以被正则地表示。由于Onsager,非平衡热力学的旧结果可以用这些新的、更全面的系统概念来重新解释和扩展。给出了一些例子。这些只是网络热力学众多应用中的一小部分,这些应用已被证明可以扩展我们处理生物和化学中普遍存在的高度交互、非线性系统的能力。介绍是在复杂性科学领域最近发展的背景下进行的。特别地,本文讨论的背景来自数学生物学家罗伯特·罗森(Robert Rosen)的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network thermodynamics and complexity: a transition to relational systems theory

Most systems of interest in today's world are highly structured and highly interactive. They cannot be reduced to simple components without losing a great deal of their system identity. Network thermodynamics is a marriage of classical and non-equilibrium thermodynamics along with network theory and kinetics to provide a practical framework for handling these systems. The ultimate result of any network thermodynamic model is still a set of state vector equations. But these equations are built in a new informative way so that information about the organization of the system is identifiable in the structure of the equations. The domain of network thermodynamics is all of physical systems theory. By using the powerful circuit simulator, the Simulation Program with Integrated Circuit Emphasis (spice), as a general systems simulator, any highly non-linear stiff system can be simulated. Furthermore, the theoretical findings of network thermodynamics are important new contributions. The contribution of a metric structure to thermodynamics compliments and goes beyond other recent work in this area. The application of topological reasoning through Tellegen's theorem shows that a mathematical structure exists into which all physical systems can be represented canonically. The old results in non-equilibrium thermodynamics due to Onsager can be reinterpreted and extended using these new, more holistic concepts about systems. Some examples are given. These are but a few of the many applications of network thermodynamics that have been proven to extend our capacity for handling the highly interactive, non-linear systems that populate both biology and chemistry. The presentation is carried out in the context of the recent growth of the field of complexity science. In particular, the context used for this discussion derives from the work of the mathematical biologist, Robert Rosen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1