J. Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, Joy Arulraj
{"title":"视频数据库系统中的查询处理","authors":"J. Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, Joy Arulraj","doi":"10.14778/3598581.3598599","DOIUrl":null,"url":null,"abstract":"State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"85 1","pages":"2289-2301"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SEIDEN: Revisiting Query Processing in Video Database Systems\",\"authors\":\"J. Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, Joy Arulraj\",\"doi\":\"10.14778/3598581.3598599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.\",\"PeriodicalId\":20467,\"journal\":{\"name\":\"Proc. VLDB Endow.\",\"volume\":\"85 1\",\"pages\":\"2289-2301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. VLDB Endow.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3598581.3598599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3598581.3598599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SEIDEN: Revisiting Query Processing in Video Database Systems
State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.